Answer:
378 Hz
Explanation:
When source of sound moves away from stationary listener
f' = f x V / ( V + Vs)
f' = 600 x 340 / ( 340 + 200)
f' = 204000/540
f' = 378 Hz
In order to determine the angle of the refracted ray, we may apply Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is constant for a given wave when it passes through two different media. Mathematically, this is:
n₁sin(∅₁) = n₂sin(∅₂)
Where n is the refractive index. Substituting the values given into the equation:
1.0003 * sin(20°) = 1.33 * sin(∅)
∅ = 14.91
The angle of the refracted ray is 15°.
Answer:
10.16 degrees
Explanation:
Apply Snells Law for both wavelenghts
\(n_{1}sin\theta_{1} = n_{2}sin\theta_{2}\)
For red
(1.620)(sin 25.5) = (1)(sin r)
For red, the angle is 35.45degrees
For violet
(1.660)(sin 25.5) = (1)(sin v)
For violet, the angle is 45.6 degrees
The difference is 45.6- 35.45 = 10.16 degrees
You can find the mass of an atom by adding the number of protons and neutrons. In this case the atom has 2 protons and 3 neutrons so the mass is 5.