Solution:
initial sphere mvr = final sphere mvr + Iω
where I = mL²/3 = 2.3g * (2m)² / 3 = 3.07 kg·m²
0.25kg * (12.5 + 9.5)m/s * (4/5)2m = 3.07 kg·m² * ω
where: ω = 2.87 rad/s
So for the rod, initial E = KE = ½Iω² = ½ * 3.07kg·m² * (2.87rad/s)²
E = 12.64 J becomes PE = mgh, so
12.64 J = 2.3 kg * 9.8m/s² * h
h = 0.29 m
h = L(1 - cosΘ) → where here L is the distance to the CM
0.03m = 1m(1 - cosΘ) = 1m - 1m*cosΘ
Θ = arccos((1-0.29)/1) = 44.77 º
Answer:
A. 4148 J/K/Kg
B. 4148 J/K/L
Explanation:
A. Heat capacity per unit mass is known as the specific heat capacity, c.
C = Heat capacity/mass(kg)
C = (523 J/K) / 0.125 Kg = 4148 J/K/Kg
B. Volume of water = mass/density
Density of water = 1 Kg/L
Volume of water = 0.125 Kg/ 1Kg/L
Volume of water = 0.125 L
Heat capacity per unit volume = (523 J/K) / 0.125 L
Heat capacity per unit volume = 4148 J/K/L
The answer is 10,560 Joules or 1.1*10^4
Explanation:
Step 1: Calculate
The equation for Kinetic Energy is
Kinetic energy=.5 times Mass times Velocity²
KE=.5*m*v²
so we plug in our numbers
KE=.5*600*35.2²
This works out to be 10,560 Joules or 1.1*10^4
Answer:
The longest wavelength for closed at one end and open at the other is
y / 4 where y is the wavelength - that is node - antinode
The next possible wavelength is 3 y / 4 - node - antinode - node -antinode
y / 4 = 3 m y = 12 meters the longest wavelength
3 y / 4 = 3 m y = 4 meters 1 / 3 times as long