Answer:
p = -8 kg-m/s
Explanation:
Given that,
Initial speed of the rock, u = 8 m/s
Mass of the rock, m = 1 kg
The ball travels up to a maximum height, then returns to the ground.
We need to find the rock's momentum as it strikes the ground. Let v be the final speed of the rock. Its final speed is as same as initial speed i.e. 8 m/s but in negative direction. So
p = mv
p = 1 kg × (-8 m/s)
= -8 kg-m/s
So, the rock's momentum as it strikes the ground is (-8 kg-m/s).
Answer:
North of west
Explanation:
Given
40,000-ton luxury line traveling 20 knots towards west and
60,000 ton freighter traveling towards North with 10 knots
suppose v is the common velocity after collision
conserving momentum in west direction

suppose the final velocity makes \theta angle with x axis

Conserving Momentum in North direction


divide 1 and 2


so search in the area
North of west to find the ship
The average speed is the ratio between the total space and the total time of the motion:

The total space is

while the total time is

So, the average velocity is

We can also rewrite it in m/s. The total space is

, while the time is

, and so
Answer c, velocity would be the answer.
Answer:
The answer is "
"
Explanation:
Using the law of conservation for energy. Equating the kinetic energy to the potential energy.
Calculating the closest distance:

