Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.
Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in concentration of the gas.
1st and 4th options are suitable answers, as these 2 changes are not exactly physical changes as it cant return back to original form and as well as its not cooling, so I feel its 1st and 4th options
Answer:
https://socratic.org/questions/how-much-heat-is-required-to-convert-5-88-g-of-ice-at-12-0-c-to-water-at-25-0-c-
Explanation:
6.6ml will be the new volume if the pressure increases to 4 atm and the temperature are lowered to 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given data:






Using equation:




Hence, 6.6ml will be the new volume if the pressure increases to 4 atm and the temperature are lowered to 200 K.
Learn more about the ideal gas equation here:
#SPJ1
should be clear acid if im not mistaken