We are given the gravitational potential energy and the height of the ball and is asked in the problem to determine the mass of the ball. the formula to be followed is PE = mgh where g is the gravitational acceleration equal to 9.81 m/s^2. substituting, 58.8 J = m*9.8 m/s^2 * 30 m; m = 0.2 kg.
6N I think I’m pretty sure
Answer:
0.20
Explanation:
The box is moving at constant velocity, which means that its acceleration is zero; so, the net force acting on the box is zero as well.
There are two forces acting in the horizontal direction:
- The pushing force: F = 99 N, forward
- The frictional force:
, backward, with
coefficient of kinetic friction
m = 50 kg mass of the box
g = 9.8 m/s^2 gravitational acceleration
The net force must be zero, so we have

which we can solve to find the coefficient of kinetic friction:

There are two main points that should be emphasized about the different types of electromagnetic radiation. The sequence from longest wavelength (radio waves) to shortest wavelength (gamma rays) is also a sequence in energy from lowest energy to highest energy
hope this helps you!✌