Answer:
0.017 N
Explanation:
The relevant relation is ...
F = GMm/r²
where G is the universal gravitational constant, 6.67408 × 10^-11 m^3·kg^-1·s^-2, M and m are the masses of the objects, and r is the distance between them.
__
Filling in the given numbers, we find the force to be ...
F = (6.67408 × 10^-11 m^3·kg^-1·s^-2)(8.7 × 10^20 kg)(77 kg)/(1.6 × 10^7 m)^2
where m in this expression is the unit "meters".
F = 6.67408 · 8.7 · 77/2.56 × 10^(-11 +20 -2·7) N ≈ 0.017 N
The asteroid exerts a force of about 0.017 N on Sally.
__
<em>Additional comment</em>
That's about 0.000023 times the force of Earth's gravity.
Examples of such quantities include distance, displacement, speed, velocity, acceleration, force, mass, momentum, energy, work, power, etc. All these quantities can by divided into two categories - vectors and scalars. A vector quantity is a quantity that is fully described by both magnitude and direction.
Answer:
1. S-S Repulsion N-S Attraction
2. S-N Attraction N-N Repulsion
Explanation:
1. S-S Repulsion N-S Attraction
2. S-N Attraction N-N Repulsion
Avg sped = total distance/ total time = 1350 mi/ 5 hrs= 270mph (i dont know if ur teacher wants you to convert this to m/s)
300miles are traveled in 1 hr. So, 300 *2hrs = 600 miles south
750/250= 3hrs north
Total distance = 600 miles + 750 miles= 1350 miles
Total time is = 3hrs + 2hrs= 5hrs
Wavelength times frequency = speed of light
7.5E14 x wavelength = 300,000 m/s
Wavelength in meters = 300,000 divided by 7.5E14