1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
e-lub [12.9K]
2 years ago
6

Please give an answer that is coherent

Physics
1 answer:
Semmy [17]2 years ago
6 0

Answer:

480

Explanation:

resistance equals to potential difference divide by electric current

120÷0.25

=480

You might be interested in
Wish if these Are not examples of <br> matter?
neonofarm [45]

Answer:

I'd love to help, but there isn't anything to choose from.

6 0
3 years ago
Read 2 more answers
Why can the atmosphere hold on to heat
Naddika [18.5K]

Answer:

A. Air

Explanation:

4 0
2 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
1- ¿Cuál sería la energía de un objeto de 50 newton de peso que se encuentra sobre una estantería de 3 metros de altura? ¿Qué ti
Liula [17]

Responder:

<h3>150 Nm </h3><h3>Energía potencial </h3>

Explicación:

El tipo de energía que posee el objeto se conoce como energía potencial. <u>La energía potencial es la energía que posee un objeto, mi virtud de su posición. </u>

Energía potencial = masa * aceleración debido a la gravedad * altura

Dado que Force = masa * aceleración debido a la gravedad

Energía potencial = Fuerza * altura

Fuerza dada = 50N y altura = 3 m

Energía potencial = 50 * 3

Energía potencial = 150 Nm

6 0
3 years ago
Anna Litical analyzes the force between a planet and its moon, varying the mass of
Travka [436]

Answer:

Trial 1 is the largest, trial 3 is the smallest

Explanation:

Given:

<em>Trial 1</em>

M₁ = 6·10²² kg

d₁ = 3 500 km = 3.5·10⁶ м

<em>Trial  2</em>

M₂ = 6·10²² kg

d₂ = 7 000 km = 7·10⁶ м

<em>Trial  3</em>

M₃ = 3·10²² kg

d₃ = 7 000 km = 7·10⁶ м

___________

F - ?

Gravitational force:

F₁ = G·m·M₁ / d₁² = m·6.67·10⁻¹¹·6·10²² / (3.5·10⁶)² = 0.37·m  (N)

F₂ = G·m·M₂ / d₂² = m·6.67·10⁻¹¹·6·10²² / (7·10⁶)² = 0.08·m  (N)

F₃ = G·m·M₃ / d₃² = m·6.67·10⁻¹¹·3·10²² / (7·10⁶)² = 0.04·m  (N)

Trial 1 is the largest, trial 3 is the smallest

5 0
10 months ago
Other questions:
  • The acceleration due to gravity for any object, including 1 washer on the string, is always assumed to be m/s2
    9·2 answers
  • All charged objects create an electric field around them. What two factors determine the strength of two electric fields upon th
    7·1 answer
  • The atoms in a sample of carbon must contain nuclei with the same number of
    14·1 answer
  • The Law of Reflection states that the Angle of Incidence will always be
    9·1 answer
  • PLEASE HELPPPP THANK YOUUUU!!!
    12·1 answer
  • Which of the following are binary ionic compounds?
    11·1 answer
  • Which best illustrates projectile motion
    12·2 answers
  • HELPPPPPPPPPPPPPPPPPP OMGGGGGGGGGGGGGGGGGGGGGGG
    9·1 answer
  • 50 points for 5 questions p.s if u get brainliest u get 50 moe and then u have 100 SO YAAAAAAY p.s dont answer the new one i for
    9·2 answers
  • Based on the images, what conclusion can Mariam make about fish and mammals?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!