The wavelengths of light that an atom gives off when an electron falls to a lower energy level corresponds to Emission spectrum , Option D is the correct answer.
<h3>What is Emission Spectrum ?</h3>
Light is absorbed or emitted when an electron jumps or falls into an energy level.
The energy of light absorbed or emitted is equal to the difference between the energy of the orbits.
Therefore , the wavelengths of light that an atom gives off when an electron falls to a lower energy level corresponds to Emission spectrum.
To know more about Emission Spectrum
brainly.com/question/13537021
#SPJ1
Answer:
M.Mass = 3.66 g/mol
Data Given:
M.Mass = M = ??
Density = d = 0.1633 g/L
Temperature = T = 273.15 K (Standard)
Pressure = P = 1 atm (standard)
Solution:
Let us suppose that the gas is an ideal gas. Therefore, we will apply Ideal Gas equation i.e.
P V = n R T ---- (1)
Also, we know that;
Moles = n = mass / M.Mass
Or, n = m / M
Substituting n in Eq. 1.
P V = m/M R T --- (2)
Rearranging Eq.2 i.e.
P M = m/V R T --- (3)
As,
Mass / Volume = m/V = Density = d
So, Eq. 3 can be written as,
P M = d R T
Solving for M.Mass i.e.
M = d R T / P
Putting values,
M = 0.1633 g/L × 0.08205 L.atm.K⁻¹.mol⁻¹ × 273.15 K / 1 atm
M = 3.66 g/mol
<u>Answer:</u> The molality of
solution is 0.782 m
<u>Explanation:</u>
Molality is defined as the amount of solute expressed in the number of moles present per kilogram of solvent. The units of molarity are mol/kg. The formula used to calculate molality:
.....(1)
Given values:
Moles of
= 0.395 mol
Mass of solvent (water) = 0.505 kg
Putting values in equation 1, we get:

Hence, the molality of
solution is 0.782 m
The given question is incomplete. The image present in the question for Reaction A is attached below along with the answer.
Explanation:
Pyruvate molecule reacts with Coenzyme A in the presence of oxygen and it results in the formation of acetyl Coenzyme A and carbon dioxide.
The enzyme pyruvae dehydrogenase helps in catalyzing this reaction. As in this biochemical reaction
gets converted into NADH.
This reaction is shown in the image attached below.