Answer:
d. the conjugate base of the weak acid
Explanation:
The strong base (BOH) is completely dissociated in water:
BOH → B⁺ + OH⁻
The resulting conjugate acid (OH⁻) is a weak acid, so it remains in solution as OH⁻ ions.
By other hand, the weak acid (HA) is only slightly dissociated in water:
HA ⇄ H⁺ + A⁻
The resulting conjugate base (A⁻) is a weak base. Thus, it reacts with H⁺ ions from water to form HA, increasing the concentration of OH⁻ ions in the solution.
Therefore, the resulting solution will have a pH > 7 (basic).
Answer:
Yes. Weight is the product of mass times gravitational acceleration. So all you have to do is vary the gravitational field and you vary weight.
Explanation:
All of the questions here are pertaining to the colligative properties of a solution and the preparation of solutions. Maybe, it would be best if you understand the equations to be used in order to answer these questions.<span>
Freezing point depression or Boiling point elevation:
</span><span>ΔT = -K (m) (i)
</span>ΔT is the change in the freezing point or the boiling point not the freezing point/boiling point. Therefore, it should be added to the original value of the property of the solvent.
<span>
K is a constant called the molal freezing point depression constant and for the boiling point is the boiling point elevation constant. It is a property of the solvent.
</span><span>
m is the concentration of the solute in the solvent in terms of molality or kg solute/kg solvent.
</span><span>
i is the vant hoff factor which will represent the number of ions which the solute dissociates when in solution.</span>
Answer:
A. Whatever is in the water, it moves. Even if a block is placed in there, it would move by sinking to the bottom. If a plastic bag was placed in there, it wouldn't sink but move a little.