The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Answer:
finding the mass percentage oven element in a compound might sound complicated, but the calculation is simple. For example, to determine the mass percentage of hydrogen in water H2O, divide the major mass of hydrogen by the total molar mass of water and then multiply the result by 100
<span>A compound is ''composed'' of elements. The periodic table is made up of elements. Atoms makes up elements and elements when reacted together make compounds.
Na+ and Cl- makes NACL....salt. a compound</span>
The layer of atmosphere that MOST planes fly in is called the troposphere.
Answer: last option, what came before the big bang?
Explanation:
The big bang theory states that the universe started as a dense nucleus of matter: a huge amount of matter concentrated in a tiny spot.
This is the conclusion of equations and evidences that prove that the universe has been and continuous to expand: since it has been expanding, there was a moment when it was as small and dense as it is possible.
So, the expansion is the result of violent explosion.
The time during which the expansion has been happening (this is how long ago the big bang occured) has been estimated thanks the the observation of the speed of recesion of the galaxies, but nothing can be told about what came before the bing bang occured.