1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
3 years ago
12

A device for training astronauts and jet fighter pilots is designed to rotate the trainee in a horizontal circle of radius 11.0

m .if the force felt by the trainee is 7.80 times her own weight, how fast is she rotating? express your answer in both (a)m/s and (b)rev/s.

Physics
2 answers:
Aneli [31]3 years ago
7 0

The speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Explanation:

The radius of horizontal circle is 11{\text{ m}} .and the force is equal to 7.8  times the weight of trainee.

Our aim is to obtain the velocity or speed of trainee in both {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  and {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The weight of the trainee is calculated as,

W=mg

The force is equal to 7.8 times the weight of trainee and is shown below.

F=7.8mg

The expression for centripetal force is shown below.

{F_{{\text{centripetal}}}}=\frac{{m{v^2}}}{r}                                  ......(1)

The radius of circle is 11{\text{ m}} .

The centripetal force is equal to the force exerted by trainee.

So, substitute 7.8mg  for {F_{{\text{centripetal}}}}  and 11  for r  in equation (1) to obtain the value of velocity in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

\begin{aligned}7.8mg&=\frac{{m{v^2}}}{{11}}\\7.8g&=\frac{{{v^2}}}{{11}}\\{v^2}&=85.8g\\\end{aligned}

The acceleration due to gravity is 9.8{{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}^{\text{2}}} .

Now, the velocity is calculated as,

\begin{gathered}{v^2}=85.8\left({9.8}\right)\\=840.84\\v=\sqrt{840.84}\\=28.99\\\approx29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}\\\end{gathered}

Therefore, the velocity of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is approximately 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The expression for angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is shown below.

\begin{aligned}\omega&=\frac{v}{2\pi r}\end{aligned}         ... (2)

The obtained velocity is 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} , so substitute 29  for v  and 11  for r  in equation (2) to obtain the angular velocity.

\begin{aligned}\omega&=\frac{29}{2\pi(11)}\\&=0.419\\&\approx0.42\text{ rev/s}\end{aligned}

Therefore, the angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is 0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace} {\text{s}}} .

Thus, the speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Learn More:

1. Linear momentum <u>brainly.com/question/11947870</u>

2. Motion and velocity <u>brainly.com/question/6955558 </u>

3. Centripetal Force <u>brainly.com/question/7420923</u>

Answer Details:

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords:

Device, astronauts, jet, pilots, rotation, trainee, horizontal, force, weight, fast, m/s, rev/s, tangential, velocity, speed, angular, centripetal.

kvv77 [185]3 years ago
6 0

The velocity of the trainee is 29 m/s or 0.42 rev/s

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration (m / s²)v = final velocity (m / s)</em>

<em>u = initial velocity (m / s)</em>

<em>t = time taken (s)</em>

<em>d = distance (m)</em>

Centripetal Acceleration of circular motion could be calculated using following formula:

\large {\boxed {a_s = v^2 / R} }

<em>a = centripetal acceleration ( m/s² )</em>

<em>v = velocity ( m/s )</em>

<em>R = radius of circle ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Radius of horizontal circle = R = 11.0 m

Force Felt by the Trainee = F = 7.80w

<u>Unknown:</u>

Velocity of Rotation = v = ?

<u>Solution:</u>

F = ma

F = m\frac{v^2}{R}

7.80w = m\frac{v^2}{R}

7.80mg = m\frac{v^2}{R}

7.80g = \frac{v^2}{R}

7.80 \times 9.8 = \frac{v^2}{11.0}

v^2 = 840.84

v \approx 29 ~m/s

\omega = \frac{v}{R}  → in rad/s

\omega = \frac{v}{2 \pi R}  → in rev/s

\omega = \frac{29}{2 \pi \times 11.0}

\omega \approx 0.42 ~ rev/s

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Uniform Circular Motion : brainly.com/question/2562955
  • Trajectory Motion : brainly.com/question/8656387

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Circular , Ball , Centripetal

You might be interested in
Why is Pluto now called a dwarf planet
zvonat [6]
Before Pluto was discovered, it was predicted. Astronomers had observed that massive objects can affect the orbits of its neighbors, and, after seeing deviations in the orbits of Uranus and Neptune, assumed something substantial existed beyond their orbits.
When Pluto was spotted, it was thought to be the predicted object and was identified as a ninth planet.
A few decades later, astronomers started discovering more and more objects around other stars and didn’t know whether to call them planets or not. There appeared to be a need to define what a planet means, and that led to what some people consider Pluto’s demotion to a dwarf planet.
The International Astronomical Union decided that full-sized planets must orbit the sun, have a round shape, and have cleared their orbits of other objects. Pluto fulfills the first two criteria, but not the third.
It still goes around the sun, it’s round enough, it’s got moons, and behaves like a planet, but the idea is that Pluto did not form the same way as the rest of the planets. Pluto’s orbit is both eccentric and inclined more than the rest of the planets by about 17 degrees. That’s suggests something is different about this object.
This debate about whether to call it a planet or not is silly, because it doesn’t matter to Pluto what you call it. It is an interesting object, goes around the sun, and shows geology and an atmosphere.
There’s a tendency to define objects based on what they are now, but nothing is constant in the universe. There are some issues with the nomenclature, and a definition today may not apply to the same object tomorrow.
7 0
3 years ago
Read 2 more answers
Black widow (m=57000 g) shovels snow, holding the shovel at a 40 degree angle above the ground. If she uses a constant force of
Dima020 [189]

Answer:

She does a work of 689.44 J in the snow.

Explanation:

A force is said to do work when it alters the state of motion of a body. The work of the force on that body will be equivalent to the energy needed to move it.

In other words, Work is a form of energy transmission between bodies. In order to carry out work, a force must be exerted on a body and it must move.

The work is equal to the product of the force times the distance and the cosine of the angle that exists between the direction of the force and the direction that the moving point or object travels:

W= F*d* cos Ф

Work W is measured in joules (J), force is measured in newtons (N), and displacement in meters (m).

In this case:

  • F= 180 N
  • d=5 m
  • Ф= 40 degrees

Replacing:

W= 180 N*5 m* cos 40

Solving:

W= 689.44 J

<u><em>She does a work of 689.44 J in the snow.</em></u>

7 0
3 years ago
Help!!!! A loop of area 0.100 m^2 is oriented at 15.5 degree angle to a 0.500 T magnetic field. It rotates until it is at a 45.0
Nat2105 [25]

Answer:

Resulting Change in the Magnetic Flux =0.013\:Wb

Explanation:

Thanks!

3 0
3 years ago
1. Find the current in a circuit where the voltage is 9 volts and the resistance is 4 ohms.
r-ruslan [8.4K]
1. b
2. c
3. a
4. a
5. b
6. should be 2400? unless u put the wrong numbers, it is probably 240 then
6 0
3 years ago
Read 2 more answers
In the electromagnetic spectrum, _______ is the _______ frequency color of visible light. A. green; highest B. red; lowest C. vi
MaRussiya [10]
Red is the lowest because it has the shortest wavelengths
5 0
3 years ago
Read 2 more answers
Other questions:
  • How do you think a graph of deceleration would differ from a graph showing acceleration
    11·2 answers
  • Give two examples of gravity in the solar system
    11·1 answer
  • Check all choices below that are correct. Increasing the frequency increases the current. Changing the frequency does not affect
    11·2 answers
  • Three point charges are located on the x-axis. The first charge, q1 = 10 μC, is at x = -1.0 m. The second charge, q2 = 20 μC, is
    7·1 answer
  • Work may be measured using units of <br> A.watts<br> B.newton<br> C.joules<br> D.newtons per second
    10·1 answer
  • Maggie is a member of her school’s environmental club and is interested in recycling. She asks the question, “How does exposure
    13·1 answer
  • The speed of sound is 344 m/sec when the air is 20 degrees Celsius how far is the source of the sound if it takes 8 seconds for
    9·1 answer
  • Why is acceleration not constant near the speed of light
    14·1 answer
  • Mars has twice the mass of Mercury and is 4 times further away from the Sun. Calculate theratio of the gravitational force from
    14·1 answer
  • A uniformly charged conducting sphere of 1.22m radius has a surface charge density 8.13µCm-2.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!