1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
3 years ago
12

A device for training astronauts and jet fighter pilots is designed to rotate the trainee in a horizontal circle of radius 11.0

m .if the force felt by the trainee is 7.80 times her own weight, how fast is she rotating? express your answer in both (a)m/s and (b)rev/s.

Physics
2 answers:
Aneli [31]3 years ago
7 0

The speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Explanation:

The radius of horizontal circle is 11{\text{ m}} .and the force is equal to 7.8  times the weight of trainee.

Our aim is to obtain the velocity or speed of trainee in both {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  and {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The weight of the trainee is calculated as,

W=mg

The force is equal to 7.8 times the weight of trainee and is shown below.

F=7.8mg

The expression for centripetal force is shown below.

{F_{{\text{centripetal}}}}=\frac{{m{v^2}}}{r}                                  ......(1)

The radius of circle is 11{\text{ m}} .

The centripetal force is equal to the force exerted by trainee.

So, substitute 7.8mg  for {F_{{\text{centripetal}}}}  and 11  for r  in equation (1) to obtain the value of velocity in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

\begin{aligned}7.8mg&=\frac{{m{v^2}}}{{11}}\\7.8g&=\frac{{{v^2}}}{{11}}\\{v^2}&=85.8g\\\end{aligned}

The acceleration due to gravity is 9.8{{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}^{\text{2}}} .

Now, the velocity is calculated as,

\begin{gathered}{v^2}=85.8\left({9.8}\right)\\=840.84\\v=\sqrt{840.84}\\=28.99\\\approx29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}\\\end{gathered}

Therefore, the velocity of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is approximately 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The expression for angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is shown below.

\begin{aligned}\omega&=\frac{v}{2\pi r}\end{aligned}         ... (2)

The obtained velocity is 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} , so substitute 29  for v  and 11  for r  in equation (2) to obtain the angular velocity.

\begin{aligned}\omega&=\frac{29}{2\pi(11)}\\&=0.419\\&\approx0.42\text{ rev/s}\end{aligned}

Therefore, the angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is 0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace} {\text{s}}} .

Thus, the speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Learn More:

1. Linear momentum <u>brainly.com/question/11947870</u>

2. Motion and velocity <u>brainly.com/question/6955558 </u>

3. Centripetal Force <u>brainly.com/question/7420923</u>

Answer Details:

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords:

Device, astronauts, jet, pilots, rotation, trainee, horizontal, force, weight, fast, m/s, rev/s, tangential, velocity, speed, angular, centripetal.

kvv77 [185]3 years ago
6 0

The velocity of the trainee is 29 m/s or 0.42 rev/s

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration (m / s²)v = final velocity (m / s)</em>

<em>u = initial velocity (m / s)</em>

<em>t = time taken (s)</em>

<em>d = distance (m)</em>

Centripetal Acceleration of circular motion could be calculated using following formula:

\large {\boxed {a_s = v^2 / R} }

<em>a = centripetal acceleration ( m/s² )</em>

<em>v = velocity ( m/s )</em>

<em>R = radius of circle ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Radius of horizontal circle = R = 11.0 m

Force Felt by the Trainee = F = 7.80w

<u>Unknown:</u>

Velocity of Rotation = v = ?

<u>Solution:</u>

F = ma

F = m\frac{v^2}{R}

7.80w = m\frac{v^2}{R}

7.80mg = m\frac{v^2}{R}

7.80g = \frac{v^2}{R}

7.80 \times 9.8 = \frac{v^2}{11.0}

v^2 = 840.84

v \approx 29 ~m/s

\omega = \frac{v}{R}  → in rad/s

\omega = \frac{v}{2 \pi R}  → in rev/s

\omega = \frac{29}{2 \pi \times 11.0}

\omega \approx 0.42 ~ rev/s

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Uniform Circular Motion : brainly.com/question/2562955
  • Trajectory Motion : brainly.com/question/8656387

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Circular , Ball , Centripetal

You might be interested in
Martin has hypothesized that the size and types of trees differ between valleys and higher elevations. He sets up a transect lin
pogonyaev

Answer: The dependent Variables include: Size and Types of trees.

The independent Variables include:

geographic elevations that is, valleys and the higher elevations.

Explanation:

The dependent variable simply refers to the variable a researcher tests or measures during an experiment. On the other hand, the independent variable simply refers to the variable that's controlled during an experiment.

Based on the definition above, the dependent variables include the size and the types of trees while the independent variables include the

geographic elevations that is, the valleys and the higher elevations.

3 0
3 years ago
In the figure below consider R = 11 Ω. Calculate the equivalent resistance.
nalin [4]

Answer:42R/41

Explanation:

R/2+R=3R/2

1/r=1/(3R/2)+1/R

1/r=2/3R+1/R

1/r=5/3R

5r=3R

r=3R/5

3R/5+3R/2=21R/10

1/r=1/2R+1/2R

1/r=1/R

r=R

R+R=2R

1/r=1/2R +1/(21R/10)

1/r=1/2R+10/21R

1/r=41/42R

41r=42R

r=42R/41

7 0
3 years ago
A car starts with an initial speed of 12 m/s and accelerates at 3 m/s/s for 5 seconds
Nostrana [21]

Explanation:

Vi = 12 m/s

a = 3 m/s^2

t = 2 s

Vf = Vi + a × t = 12 + 3 ×2 = 18 m/s

3 0
3 years ago
Seismic waves carry energy from earthquakes through the earth's crust. Seismic waves are...
Crank

Answer:

- longitudinal waves only

Explanation:

The P seismic waves travel as elastic motions at the highest speeds. They are longitudinal waves that can be transmitted by both solid and liquid materials in the Earth's interior.

3 0
3 years ago
suppose you are in a car driving down a road. a large truck passes your car. what does the car have a tendency to do?
balandron [24]

it moves toward the truck because increased air movement between the car and the truck decreases pressure.

Hope this helped :) <3

6 0
3 years ago
Read 2 more answers
Other questions:
  • When the metallic body of a car is moved into a painting chamber, a mist of electrically neutral paint is sprayed around the car
    12·1 answer
  • Field work combined with laboratory analysis
    11·1 answer
  • What allows the bimetallic coil to turn on or off a heating or cooling system? The two metals contract the same amount. The ther
    9·1 answer
  • 19.A 20 kg sign is pulled by a horizontal force such that the single rope (originally vertical) holding the sign makes an angle
    13·1 answer
  • Question : Is it possible for heat to transfer from T3 to T1 and why?
    14·1 answer
  • Compute the specific heat capacity at constant volume of nitrogen (N2) gas. The molar mass of N2 is 28.0 g/mol.
    10·1 answer
  • Find the volume and area of a spherical body of radius 48 cm.​
    9·1 answer
  • An electron is traveling in the positive x direction. A uniform electric field is present and oriented in the negative z directi
    12·1 answer
  • A stationary 25 kg object is located on a table near the surface of the earth. The coefficient of static friction between the su
    8·1 answer
  • What is the meaning of the reference point in electric potential?.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!