1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
3 years ago
12

A device for training astronauts and jet fighter pilots is designed to rotate the trainee in a horizontal circle of radius 11.0

m .if the force felt by the trainee is 7.80 times her own weight, how fast is she rotating? express your answer in both (a)m/s and (b)rev/s.

Physics
2 answers:
Aneli [31]3 years ago
7 0

The speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Explanation:

The radius of horizontal circle is 11{\text{ m}} .and the force is equal to 7.8  times the weight of trainee.

Our aim is to obtain the velocity or speed of trainee in both {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  and {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The weight of the trainee is calculated as,

W=mg

The force is equal to 7.8 times the weight of trainee and is shown below.

F=7.8mg

The expression for centripetal force is shown below.

{F_{{\text{centripetal}}}}=\frac{{m{v^2}}}{r}                                  ......(1)

The radius of circle is 11{\text{ m}} .

The centripetal force is equal to the force exerted by trainee.

So, substitute 7.8mg  for {F_{{\text{centripetal}}}}  and 11  for r  in equation (1) to obtain the value of velocity in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

\begin{aligned}7.8mg&=\frac{{m{v^2}}}{{11}}\\7.8g&=\frac{{{v^2}}}{{11}}\\{v^2}&=85.8g\\\end{aligned}

The acceleration due to gravity is 9.8{{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}^{\text{2}}} .

Now, the velocity is calculated as,

\begin{gathered}{v^2}=85.8\left({9.8}\right)\\=840.84\\v=\sqrt{840.84}\\=28.99\\\approx29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}\\\end{gathered}

Therefore, the velocity of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is approximately 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The expression for angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is shown below.

\begin{aligned}\omega&=\frac{v}{2\pi r}\end{aligned}         ... (2)

The obtained velocity is 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} , so substitute 29  for v  and 11  for r  in equation (2) to obtain the angular velocity.

\begin{aligned}\omega&=\frac{29}{2\pi(11)}\\&=0.419\\&\approx0.42\text{ rev/s}\end{aligned}

Therefore, the angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is 0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace} {\text{s}}} .

Thus, the speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Learn More:

1. Linear momentum <u>brainly.com/question/11947870</u>

2. Motion and velocity <u>brainly.com/question/6955558 </u>

3. Centripetal Force <u>brainly.com/question/7420923</u>

Answer Details:

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords:

Device, astronauts, jet, pilots, rotation, trainee, horizontal, force, weight, fast, m/s, rev/s, tangential, velocity, speed, angular, centripetal.

kvv77 [185]3 years ago
6 0

The velocity of the trainee is 29 m/s or 0.42 rev/s

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration (m / s²)v = final velocity (m / s)</em>

<em>u = initial velocity (m / s)</em>

<em>t = time taken (s)</em>

<em>d = distance (m)</em>

Centripetal Acceleration of circular motion could be calculated using following formula:

\large {\boxed {a_s = v^2 / R} }

<em>a = centripetal acceleration ( m/s² )</em>

<em>v = velocity ( m/s )</em>

<em>R = radius of circle ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Radius of horizontal circle = R = 11.0 m

Force Felt by the Trainee = F = 7.80w

<u>Unknown:</u>

Velocity of Rotation = v = ?

<u>Solution:</u>

F = ma

F = m\frac{v^2}{R}

7.80w = m\frac{v^2}{R}

7.80mg = m\frac{v^2}{R}

7.80g = \frac{v^2}{R}

7.80 \times 9.8 = \frac{v^2}{11.0}

v^2 = 840.84

v \approx 29 ~m/s

\omega = \frac{v}{R}  → in rad/s

\omega = \frac{v}{2 \pi R}  → in rev/s

\omega = \frac{29}{2 \pi \times 11.0}

\omega \approx 0.42 ~ rev/s

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Uniform Circular Motion : brainly.com/question/2562955
  • Trajectory Motion : brainly.com/question/8656387

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Circular , Ball , Centripetal

You might be interested in
A student went to a hill station early in the morning, he could hear the echo of his clap after 0.1 second. When he went to the
Dahasolnce [82]

Answer:

See the explanation.

Explanation:

The speeds of sound depend upon the temperature of the medium. As the temperature increased in the afternoon, the speed of sound increases. Then the time taken by reflected sound will be less than 0.1 sec in the afternoon. And to hear an echo the time gap between an original sound and reflected sound must be at least 0.1 sec. That is why the student could not hear the echo at all in the afternoon.

7 0
3 years ago
A cart of mass M = 2.40 kg can roll without friction on a level track. A light string draped over a light, frictionless pulley c
sergiy2304 [10]

Answer:

Part a)

a_{hanger} = g - \frac{T}{m}

Part b)

a_{cart} = \frac{T}{M}

Part c)

a = \frac{mg}{M + m}

Part d)

a = 1.35 m/s^2

Explanation:

Part a)

For hanger we know that it will have tension force upwards while it has downwards its weight so we will have

mg - T = ma

so we have

a_{hanger} = g - \frac{T}{m}

Part b)

now for car that is rolling on the floor the net force is given as

F = Ma

T = Ma

a_{cart} = \frac{T}{M}

Part c)

now we know that the cart and the hanger both are connected to each other

so they must have same acceleration

so we will have

T = Ma

mg - Ma = ma

a = \frac{mg}{M + m}

Part d)

now we know that

M = 2.40 kg

m = 0.50 kg

so we will have

a = \frac{0.50(9.81)}{2.40 + 0.50}

a = 1.35 m/s^2

6 0
3 years ago
What are you experiencing if you close your eyes and feel as if you are not moving
vlabodo [156]
Well i would feel i am moving i also would be scared if i didnt know i was moving even with my eyes closed 

8 0
3 years ago
At what point on the position-time graph shown is the object's instantaneous velocity greatest?
ioda

I'm probably going to have to say C. E as it seems the steepest right around there. If I'm wrong on that, it has to be B. B

7 0
3 years ago
Read 2 more answers
Two objects, one with a mass of 2 m and one with a mass of 4 m are attracted to each other
Nadusha1986 [10]
It would be 7 M 4 m x 2 m equals 8 M - 1 =7
3 0
2 years ago
Other questions:
  • || Climbing ropes stretch when they catch a falling climber, thus increasing the time it takes the climber to come to rest and r
    14·2 answers
  • The bohr model of the atom addressed the problem of
    8·1 answer
  • Juggles the clown stands on one end of a teeter-totter at rest on the ground. Bangles the clown jumps off a platform 2.4 m above
    9·1 answer
  • Is a broom an example of a wedge?
    11·1 answer
  • Read the scenario. A horse accelerates +2 mi/h/s south. Which option defines the horse’s acceleration?
    15·1 answer
  • Define Velocity.<br>Have a Nice Day Ahead​
    5·1 answer
  • Why did the Framers establish the Legislative Branch in Article I of the Constitution?
    10·1 answer
  • Help me please with both questions?
    5·2 answers
  • Water does not run out of dropper unless the rubber-bulb is pressed. Why?
    7·1 answer
  • A car travels 30 kilometers north for 2 hours, then travels 45 kilometers east for 3 hours. The car then drives south for 30 kil
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!