1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
3 years ago
12

A device for training astronauts and jet fighter pilots is designed to rotate the trainee in a horizontal circle of radius 11.0

m .if the force felt by the trainee is 7.80 times her own weight, how fast is she rotating? express your answer in both (a)m/s and (b)rev/s.

Physics
2 answers:
Aneli [31]3 years ago
7 0

The speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Explanation:

The radius of horizontal circle is 11{\text{ m}} .and the force is equal to 7.8  times the weight of trainee.

Our aim is to obtain the velocity or speed of trainee in both {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  and {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The weight of the trainee is calculated as,

W=mg

The force is equal to 7.8 times the weight of trainee and is shown below.

F=7.8mg

The expression for centripetal force is shown below.

{F_{{\text{centripetal}}}}=\frac{{m{v^2}}}{r}                                  ......(1)

The radius of circle is 11{\text{ m}} .

The centripetal force is equal to the force exerted by trainee.

So, substitute 7.8mg  for {F_{{\text{centripetal}}}}  and 11  for r  in equation (1) to obtain the value of velocity in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

\begin{aligned}7.8mg&=\frac{{m{v^2}}}{{11}}\\7.8g&=\frac{{{v^2}}}{{11}}\\{v^2}&=85.8g\\\end{aligned}

The acceleration due to gravity is 9.8{{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}^{\text{2}}} .

Now, the velocity is calculated as,

\begin{gathered}{v^2}=85.8\left({9.8}\right)\\=840.84\\v=\sqrt{840.84}\\=28.99\\\approx29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}\\\end{gathered}

Therefore, the velocity of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is approximately 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The expression for angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is shown below.

\begin{aligned}\omega&=\frac{v}{2\pi r}\end{aligned}         ... (2)

The obtained velocity is 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} , so substitute 29  for v  and 11  for r  in equation (2) to obtain the angular velocity.

\begin{aligned}\omega&=\frac{29}{2\pi(11)}\\&=0.419\\&\approx0.42\text{ rev/s}\end{aligned}

Therefore, the angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is 0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace} {\text{s}}} .

Thus, the speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Learn More:

1. Linear momentum <u>brainly.com/question/11947870</u>

2. Motion and velocity <u>brainly.com/question/6955558 </u>

3. Centripetal Force <u>brainly.com/question/7420923</u>

Answer Details:

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords:

Device, astronauts, jet, pilots, rotation, trainee, horizontal, force, weight, fast, m/s, rev/s, tangential, velocity, speed, angular, centripetal.

kvv77 [185]3 years ago
6 0

The velocity of the trainee is 29 m/s or 0.42 rev/s

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration (m / s²)v = final velocity (m / s)</em>

<em>u = initial velocity (m / s)</em>

<em>t = time taken (s)</em>

<em>d = distance (m)</em>

Centripetal Acceleration of circular motion could be calculated using following formula:

\large {\boxed {a_s = v^2 / R} }

<em>a = centripetal acceleration ( m/s² )</em>

<em>v = velocity ( m/s )</em>

<em>R = radius of circle ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Radius of horizontal circle = R = 11.0 m

Force Felt by the Trainee = F = 7.80w

<u>Unknown:</u>

Velocity of Rotation = v = ?

<u>Solution:</u>

F = ma

F = m\frac{v^2}{R}

7.80w = m\frac{v^2}{R}

7.80mg = m\frac{v^2}{R}

7.80g = \frac{v^2}{R}

7.80 \times 9.8 = \frac{v^2}{11.0}

v^2 = 840.84

v \approx 29 ~m/s

\omega = \frac{v}{R}  → in rad/s

\omega = \frac{v}{2 \pi R}  → in rev/s

\omega = \frac{29}{2 \pi \times 11.0}

\omega \approx 0.42 ~ rev/s

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Uniform Circular Motion : brainly.com/question/2562955
  • Trajectory Motion : brainly.com/question/8656387

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Circular , Ball , Centripetal

You might be interested in
I need a science fair project that doesn't need anything on the pic and it can be about any subject thanks.
tigry1 [53]

you could make a self propelled car all you need is cardboard, wheels, and a balloons or rubber bands

  

7 0
3 years ago
Any fracture or system of fractures along which Earth moves is known as a
Anton [14]
The answer should be B. Fault.

4 0
3 years ago
Complete the statements about the law of conservation of momentum.
Svetllana [295]

Answer:

complete the statements

Explanation:

3 0
2 years ago
What happens too baking soda when you heat it up?
Fantom [35]
Salutations!

What happens to baking soda when you heat it up!

When you heat up baking soda, it loses carbon dioxide which tends to crest bubbles. This is what makes it quite light and fluffy.

Hope I helped :D
4 0
3 years ago
A substance with a pH of 13.0 will
nata0808 [166]
B......................
7 0
3 years ago
Read 2 more answers
Other questions:
  • The overall length of a piccolo is 32.0 cm. The resonating air column vibrates as in a pipe that is open at both ends. (a) Find
    5·1 answer
  • Assume that the mass has been moving along its circular path for some time. You start timing its motion with a stopwatch when it
    9·1 answer
  • What is this process called when a liquid turns into gas
    13·1 answer
  • A toaster is plugged into a 132 volt household circuit it draws the amps of current If you use a toaster 2 hours a week how much
    13·1 answer
  • A compound is made up of two or more of what?
    14·2 answers
  • A solar cell generates a potential difference of 0.25 V when a 550 Ω resistor is connected across it, and a potential difference
    12·1 answer
  • What is the relationship between the electric force and each one of the charges?
    13·1 answer
  • Mercury has one of the lowest specific heats. This fact added to its liquid state at most atmospheric temperatures make it effec
    10·1 answer
  • What is the value of 9682 when rounded to three significant figures
    9·1 answer
  • A uniform rod is hung at one end and is partially submerged in water. If the density of the rod is 5/9 that of water, find the f
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!