1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
3 years ago
12

A device for training astronauts and jet fighter pilots is designed to rotate the trainee in a horizontal circle of radius 11.0

m .if the force felt by the trainee is 7.80 times her own weight, how fast is she rotating? express your answer in both (a)m/s and (b)rev/s.

Physics
2 answers:
Aneli [31]3 years ago
7 0

The speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Explanation:

The radius of horizontal circle is 11{\text{ m}} .and the force is equal to 7.8  times the weight of trainee.

Our aim is to obtain the velocity or speed of trainee in both {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  and {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The weight of the trainee is calculated as,

W=mg

The force is equal to 7.8 times the weight of trainee and is shown below.

F=7.8mg

The expression for centripetal force is shown below.

{F_{{\text{centripetal}}}}=\frac{{m{v^2}}}{r}                                  ......(1)

The radius of circle is 11{\text{ m}} .

The centripetal force is equal to the force exerted by trainee.

So, substitute 7.8mg  for {F_{{\text{centripetal}}}}  and 11  for r  in equation (1) to obtain the value of velocity in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

\begin{aligned}7.8mg&=\frac{{m{v^2}}}{{11}}\\7.8g&=\frac{{{v^2}}}{{11}}\\{v^2}&=85.8g\\\end{aligned}

The acceleration due to gravity is 9.8{{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}^{\text{2}}} .

Now, the velocity is calculated as,

\begin{gathered}{v^2}=85.8\left({9.8}\right)\\=840.84\\v=\sqrt{840.84}\\=28.99\\\approx29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}\\\end{gathered}

Therefore, the velocity of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is approximately 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} .

The expression for angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is shown below.

\begin{aligned}\omega&=\frac{v}{2\pi r}\end{aligned}         ... (2)

The obtained velocity is 29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}} , so substitute 29  for v  and 11  for r  in equation (2) to obtain the angular velocity.

\begin{aligned}\omega&=\frac{29}{2\pi(11)}\\&=0.419\\&\approx0.42\text{ rev/s}\end{aligned}

Therefore, the angular velocity in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is 0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace} {\text{s}}} .

Thus, the speed of trainee in {{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{29{\text{ }}{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}  and in {{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}  is \boxed{0.42{\text{ }}{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}} .

Learn More:

1. Linear momentum <u>brainly.com/question/11947870</u>

2. Motion and velocity <u>brainly.com/question/6955558 </u>

3. Centripetal Force <u>brainly.com/question/7420923</u>

Answer Details:

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords:

Device, astronauts, jet, pilots, rotation, trainee, horizontal, force, weight, fast, m/s, rev/s, tangential, velocity, speed, angular, centripetal.

kvv77 [185]3 years ago
6 0

The velocity of the trainee is 29 m/s or 0.42 rev/s

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration (m / s²)v = final velocity (m / s)</em>

<em>u = initial velocity (m / s)</em>

<em>t = time taken (s)</em>

<em>d = distance (m)</em>

Centripetal Acceleration of circular motion could be calculated using following formula:

\large {\boxed {a_s = v^2 / R} }

<em>a = centripetal acceleration ( m/s² )</em>

<em>v = velocity ( m/s )</em>

<em>R = radius of circle ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Radius of horizontal circle = R = 11.0 m

Force Felt by the Trainee = F = 7.80w

<u>Unknown:</u>

Velocity of Rotation = v = ?

<u>Solution:</u>

F = ma

F = m\frac{v^2}{R}

7.80w = m\frac{v^2}{R}

7.80mg = m\frac{v^2}{R}

7.80g = \frac{v^2}{R}

7.80 \times 9.8 = \frac{v^2}{11.0}

v^2 = 840.84

v \approx 29 ~m/s

\omega = \frac{v}{R}  → in rad/s

\omega = \frac{v}{2 \pi R}  → in rev/s

\omega = \frac{29}{2 \pi \times 11.0}

\omega \approx 0.42 ~ rev/s

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Uniform Circular Motion : brainly.com/question/2562955
  • Trajectory Motion : brainly.com/question/8656387

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Circular , Ball , Centripetal

You might be interested in
What is the weight of a rock with a mass of 3.6 kilograms
Marysya12 [62]
3.85 pounds is the answer
4 0
3 years ago
Please answer the question below. No files, No Docs, or any Link. ONLY REAL ANSWER. Whoever, answers this question will get 50 p
Yuki888 [10]

Answer:

i tried :( sorry

Explanation:

i believe the role of the government is to help other people and make laws tha help the environment  and  A democracy means rule by the people. The name is used for different forms of government.  

7 0
3 years ago
A 221 g cart starts from rest and rolls in the right direction (positive) down an incline. The incline is at a height of 5 cm. A
Julli [10]

Answer:

1) p₀ = 0.219 kg m / s, p = 0, 2)  Δp = -0.219 kg m / s, 3) 100%

Explanation:

For the first part, which is speed just before the crash, we can use energy conservation

Initial. Highest point

            Em₀ = U = mg y

Final. Low point just before the crash

           Emf = K = ½ m v²

          Em₀ = Emf

          m g y = ½ m v²

           v = √ 2 g y

Let's calculate

           v = √ (2 9.8 0.05)

           v = 0.99 m / s

1) the moment before the crash is

           p₀ = m v

           p₀ = 0.221 0.99

           p₀ = 0.219 kg m / s

After the collision, the car's speed is zero, so its moment is zero.

           p = 0

2) change of momentum

           Δp = p - p₀

            Δp = 0- 0.219

            Δp = -0.219 kg m / s

3) the reason is

     Δp / p = 1

In percentage form it is 100%

3 0
3 years ago
A small grinding wheel has a moment of inertia of 4.0*10-5kgm2. What net torque must be applied to the wheel for its angular acc
kvv77 [185]

Hi there!

We can use the rotational equivalent of Newton's Second Law:

\huge\boxed{\Sigma \tau = I \alpha}

Στ = Net Torque (Nm)

I = Moment of inertia (kgm²)

α = Angular acceleration (rad/sec²)

We can plug in the given values to solve.

\Sigma \tau = (4 * 10^{-5})(150) = \boxed{0.006 Nm}

4 0
2 years ago
Which of Newton’s laws explains why a satellite continually orbits the earth and does not fall into the ground?
Nuetrik [128]

Answer:

Newtons 1st law of inertia

Explanation:

4 0
2 years ago
Read 2 more answers
Other questions:
  • A handwashing sink may be used for: A. Handwashing and Washing Dishes B. Handwashing and Washing Ready-to-Eat Foods C. Handwashi
    12·2 answers
  • "a 10 kg rock is pushed off the edge of a bridge 50 meters above the ground. what was the kinetic energy of the rock at the midw
    9·1 answer
  • Identify whether each item is an example of science or technology.
    9·1 answer
  • Which of the following is an observation? A. The baby was crying very loudly; therefore, he must have been hungry. B. Jason star
    6·2 answers
  • Why must you use temperature to specify how hot or cold something is?
    13·2 answers
  • A force of 100 newtons is used to move an object a distance of 15 meters with a power of 25 watts. Find the
    9·1 answer
  • A rectangular solid made of carbon has sides of lengths 1.0 cm, 2.0 cm, and 4.0 cm, lying along the x, y, and z axes, respective
    15·1 answer
  • A massless, rigid board is placed across two bathroom scales that are separated by a distance of 1.71 m. A person lies on the bo
    5·1 answer
  • Any change in an object's velocity is caused by
    8·2 answers
  • A car is traveling at a speed of 37 m/s.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!