Using the appropriate approximations:
dx/L = mλ
d = slit separation
x = fringe spacing
L = distance between slits and screen
m = some integer, used to determine the distance from the central bright fringe to another bright fringe
We don't really need a value for m because we're calculating the distance between any pair of consecutive fringes. Let's just set m = 1
Given values:
d = 1.0mm
L = 2.0m
λ = 480nm
Substitute the terms in the equation with our given values and solve for x:
1.0*10⁻³*x/2 = 480*10⁻9
<h3>x = 0.96mm</h3>
the path of an electron around the nucleus of an atom
Answer:
An <u>applied force</u> is a force that is applied to an object by a person or another object. If a person is pushing a desk across the room, then there is an applied force acting upon the object. The applied force is the force exerted on the desk by the person.
A <u>friction force</u> is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing intermolecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an object can be calculated using the formula below:
= µ •