Answer:
Notice that the number of atoms of
K
and
Cl
are the same on both sides, but the numbers of
O
atoms are not. There are 3
O
atoms on the the left side and 2 on the right. 3 and 2 are factors of 6, so add coefficients so that there are 6
O
atoms on both sides.
2KClO
3
(
s
)
+ heat
→
KCl(s)
+
3O
2
(
g
)
Now the
K
and
Cl
atoms are not balanced. There are 2 of each on the left and 1 of each on the right. Add a coefficient of 2 in front of
KCl
.
2KClO
3
(
s
)
+ heat
→
2KCl(s)
+
3O
2
(
g
)
The equation is now balanced with 2
K
atoms,
Equilibrium will shift towards the products when temperature is decreased in an exothermic reaction of the formation of ammonia.
<h3>What is an exothermic reaction?</h3>
An exothermic reaction is a reaction in which heat content of the reactants is greater than the heat content of product.
In an exothermic reaction, heat is given off.
For an exothermic reaction in equilibrium, increasing temperature shifts equilibrium to the towards the left, towards the reactants.
On the other, equilibrium will shift towards the products when temperature is decreased.
Therefore, equilibrium will shift towards the products when temperature is decreased in the reaction of the formation of ammonia.
Learn more about exothermic reactions at: brainly.com/question/13892884
#SPJ1
Answer:

Explanation:
Given that:

From equation (3) , multiplying (-1) with equation (3) and interchanging reactant with the product side; we have:

Multiplying (2) with equation (4) ; we have:

From equation (1) ; multiplying (-1) with equation (1); we have:

From equation (2); multiplying (3) with equation (2); we have:

Now; Adding up equation (5), (6) & (7) ; we get:



<u> </u>

<u> </u>
<u />
(According to Hess Law)


BaSO4 is the correct formula for barium (ll) sulfate
<span>The atoms or molecules attain enough kinetic energy to overcome any intermolecular attractions they have. Since there are no longer any attractive forces between the particles, they are free to drift away into space. The same sort of thing happens in ordinary evaporation, but only at the surface. </span>