The pH unit has 10x as many hydrogens ions as the unit above.
Ex: A pH of 5 would have 10x more hydrogen ions than a pH of 6
and 100x more than if it had a pH of 7.
With a pH of 9 and 3, this is equivalent to 10⁶
So your answer should be:
1,000,000
I think it’s oxygen and carbon
Answer:
Frequency = 6.16 ×10¹⁴ Hz
λ = 4.87×10² nm
Explanation:
In case of hydrogen atom energy associated with nth state is,
En = -13.6/n²
For n = 2
E₂ = -13.6 / 2²
E₂ = -13.6/4
E₂ = -3.4 ev
Kinetic energy of electron = -E₂ = 3.4 ev
For n = 4
E₄ = -13.6 / 4²
E₄ = -13.6/16
E₄ = -0.85 ev
Kinetic energy of electron = -E₄ = 0.85 ev
Wavelength of radiation emitted:
E = hc/λ = E₄ - E₂
hc/λ = E₄ - E₂
by putting values,
6.63×10⁻³⁴Js × 3×10⁸m/s / λ = -0.85ev - (-3.4ev )
6.63×10⁻³⁴ Js× 3×10⁸m/s / λ = 2.55 ev
λ = 6.63×10⁻³⁴ Js× 3×10⁸m/s /2.55ev
λ = 6.63×10⁻³⁴ Js× 3×10⁸m/s /2.55× 1.6×10⁻¹⁹ J
λ = 19.89 ×10⁻²⁶ Jm / 2.55× 1.6×10⁻¹⁹ J
λ = 19.89 ×10⁻²⁶ Jm / 4.08×10⁻¹⁹ J
λ = 4.87×10⁻⁷ m
m to nm:
4.87×10⁻⁷ m ×10⁹nm/1 m
4.87×10² nm
Frequency:
Frequency = speed of electron / wavelength
by putting values,
Frequency = 3×10⁸m/s /4.87×10⁻⁷ m
Frequency = 6.16 ×10¹⁴ s⁻¹
s⁻¹ = Hz
Frequency = 6.16 ×10¹⁴ Hz
Answer:
Mass of NH₃ produced = 34 g
Explanation:
Given data:
Mass of nitrogen = 28 g
Mass of Hydrogen = 12 g
Mass of NH₃ produced = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Moles of nitrogen:
Number of moles = mass/molar mass
Number of moles = 28 g/ 28 g/mol
Number of moles = 1 mol
Moles of hydrogen:
Number of moles = mass/molar mass
Number of moles = 12 g/ 2 g/mol
Number of moles = 6 mol
Now we will compare the moles of hydrogen and nitrogen with ammonia.
H₂ : NH₃
3 : 2
6 : 2/3×6 = 4 mol
N₂ : NH₃
1 : 2
Number of moles of ammonia produced by nitrogen are less thus it will act as limiting reactant.
Mass of ammonia produced:
Mass = number of moles × molar mass
Mass = 2 mol × 17 g/mol
Mass = 34 g