Answer:
Neither.
Explanation:
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.
Answer:
ΔTmin = 3.72 °C
Explanation:
With a 16-bit ADC, you get a resolution of
steps. This means that the ADC will divide the maximum 10V input into 65536 steps:
ΔVmin = 10V / 65536 = 152.59μV
Using the thermocouple sensitiviy we can calculate the smallest temperature change that 152.59μV represents on the ADC:

Answer:
Where is question 12, we need it to answer this question
Explanation:
Answer:
p= 1.50289×10⁷ N/m²
Explanation:
Given
HA = (564 m)................(River Elevation)
HB = (2096 m).............(Village Elevation)
Area = A =(π/4){Diameter}² = (π/4){0.15 m}² = 0.017671 m²
ρ = (1 gram/cm³) = (1000 kg/m³)........(Water Density)
p(pressure)=?
Solution
p=PA - PB
p= ρ*g*HB - ρ*g*HA
p= (ρ*g)*(HB - HA)
p= (1000×9.81 )×{2096 - 564}
p= 1.50289×10⁷ N/m²