1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
3 years ago
8

A longitudinal wave is a type of wave that transfers energy _____ to the direction of wave motion. A transverse wave, on the oth

er hand, is a type of wave that transfers energy _____ to the direction of wave motion.
Physics
2 answers:
aksik [14]3 years ago
8 0

parallel then perpendicular

olga nikolaevna [1]3 years ago
4 0

Answer: The correct answers are parallel and perpendicular.

Explanation:

Wave is a disturbance which carries energy from one particle to another.

There are two types of the mechanical waves: Longitudinal wave and transverse wave.

In the longitudinal wave, the particle vibrates parallel to the direction of the motion of the wave. For example, sound wave.

In the transverse wave, the particle vibrates perpendicular to the direction of the motion of the wave. For example, light wave.

Therefore, A longitudinal wave is a type of wave that transfers energy parallel to the direction of wave motion.

A transverse wave, on the other hand, is a type of wave that transfers energy perpendicular to the direction of wave motion.

You might be interested in
Can somebody definee newton1 word to word pls​
Dimas [21]

Answer:

One newton is a unit of force equal to the force needed to move a one kilogram mass by one meter per second per second. Word originsThis word is named for Sir Isaac Newton (1642-1727), the great English mathematician and physicist who discovered gravity.

Explanation:

hope this help you

mark as brainlist

7 0
3 years ago
An electron is moving at 7.4x105 m/s perpendicular to a magnetic field. It experiences a force of 2.0x10–13 N. What is the magne
alisha [4.7K]

Answer:

1.69 T

Explanation:

Applying,

F = BvqsinФ.................. Equation 1

Where F = Force, B = magnetic field, v = velocity, q = charge on an electron, Ф = angle between the electron and the field.

make B the subject of the equation,

B = F/(vqsinФ)............. Equation 2

From the question,

Given: F = 2.0×10⁻¹³ N, v = 7.4×10⁵ m/s, Ф = 90°

Constant: q = 1.60×10⁻¹⁹ C

Substitute into equation 2

B =  2.0×10⁻¹³/(7.4×10⁵×1.60×10⁻¹⁹×sin90°)

B = 0.169×10

B = 1.69 T

4 0
3 years ago
A cart, which has a mass of 2.30 kg is sitting at the top of an inclined plane, which is 4.50 meters long and meets the horizont
expeople1 [14]

Answer:

a) The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) The magnitude of the force that causes the cart to roll down is 5.47 N.

c) The acceleration of the cart is 2.38 m/s²

d) It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

g) The work done by the gravitational force is 24.6 J.

Explanation:

Hi there!

a) The gravitational potential energy is calculated using the following equation:

EP = m · g · h

Where:

EP = gravitational potential energy.

m = mass of the object.

g = acceleration due to gravity.

h = height at which the object is located.

The height of the inclined plane can be calculated using trigonomoetry:

sin 14.0° = height / lenght

sin 14.0° = height / 4.50 m

4.50 m · sin 14.0° = height

height = 1.09 m

Then, the gravitational potential energy will be:

EP = m · g · h

EP = 2.30 kg · 9.81 m/s² · 1.09 m = 24.6 J

The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) Please, see the attached figure for a graphical description of the problem and the forces acting on the cart. The force that causes the cart to accelerate down the incline is the horizontal component of the weight (Fwx in the figure). The magnitude of this force can be obtained using trigonometry:

sin 14° = Fwx / Fw

The weight of the cart (Fw) is calculated as follows:

Fw = m · g

Fw = 2.30 kg · 9.81 m/s²

Fw = 22.6 N

Then, the x-component of the weight will be:

FW · sin 14° = Fwx

22.6 N · sin 14° = Fwx

Fwx = 5.47 N

The magnitude of the force that causes the cart to roll down is 5.47 N.

c)Using the equation of Fwx we can calculate the acceleration of the cart:

Fwx = m · a

Where "m" is the mass of the cart and "a" is the acceleration.

Fwx / m = a

5.47 N / 2.30 kg = a

a = 2.38 m/s²

The acceleration of the cart is 2.38 m/s²

d) To calculate the time it takes the cart to reach the bottom of the incline, let´s use the equation of position of the cart:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the cart at time t.

x0 = initial position.

v0 = initial velocity.

a = acceleration.

t = time.

Considering the initial position as the point at which the cart starts rolling (x0 = 0) and knowing that the cart starts from rest (v0 = 0), let´s find the time it takes the cart to travel the 4.50 m of the inclined plane:

x = 1/2 · a · t²

4.50 m = 1/2 · 2.38 m/s² · t²

2 · 4.50 m / 2.38 m/s² = t²

t = 1.94 s

It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane can be obtained using the following equation:

v = v0 + a · t

v = 0 m/s + 2.38 m/s² · 1.94 s

v = 4.62 m/s

The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy can be calculated using the following equation:

KE = 1/2 · m · v²

Where:

KE =  kinetic energy.

m = mass of the cart.

v = velocity of the cart.

KE = 1/2 · 2.30 kg · (4.62 m/s)²

KE = 24.6 J

The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

The gain of kinetic energy is equal to the loss of gravitational potential energy.

g) The work done by the gravitational force can be calculated using the work-energy theorem: the work done by the gravitational force is equal to the negative change in the gravitational potential energy:

W = -ΔPE

W = -(final potential energy - initial potential energy)

W = -(0 - 24.6 J)

W = 24.6 J

This can also be calculated using the definition of work:

W = Fw · d

Where "d" is the distance traveled in the direction of the force, that is the height of the inclined plane:

W = 22.6 N · 1.09 m = 24.6 J.

The work done by the gravitational force is 24.6 J.

4 0
3 years ago
What has to happen for a feather and ball to fall at the same time
Alex_Xolod [135]
This means that two objects will reach the ground at the same time if they are dropped simultaneously from the same height. ... When air resistance plays a role, the shape of the object becomes important. In air, a feather and a ball do not fall at the same rate.
4 0
3 years ago
What are some cunductors
sdas [7]

Answer:

copper, silver, aluminum, brass

Explanation:

you could have looked that up

4 0
3 years ago
Other questions:
  • A wall clock has a minute hand with a length of 0.53 m and an hour hand with a length of 0.26 m. Take the center of the clock as
    5·1 answer
  • A ball is thrown straight up from a point 2 m above the ground. The ball reaches a maximum height of 3 m above its starting poin
    10·1 answer
  • A block weighing 400 kg rests on a horizontal surface and supports on top of it ,another block of weight 100 kg which is attache
    10·1 answer
  • A solenoid coil with 22 turns of wire is wound tightly around another coil with 340 turns. The inner solenoid is 25.0 cm long an
    9·2 answers
  • A taxi hurries 156km in 1 1/2 hours. what is it's average speed in kilometers per hour​
    9·1 answer
  • 1. The gravitational force acting on a falling body and its weight is constant. But the law of universal gravitation tells us th
    15·1 answer
  • ¿Cuál es la frecuencia de una ola con una velocidad de 14 m / s y una longitud de onda de 20 metros?
    11·1 answer
  • Quantitative data is _____________ Lesson 1.11
    9·1 answer
  • A rock, initially at rest with respect to Earth and located an infinite distance away is released and accelerates toward Earth.
    10·1 answer
  • How long can you drive on empty?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!