The mercury inside the thermometer is a pure substance hope this helps :)
Explanation:
The given reaction will be as follows.

So, equilibrium constant for this equation will be as follows.
![K_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5BCO%5D%5BH_%7B2%7D%5D%5E%7B2%7D%7D)
As it is given that concentration of all the species is 2.4. Therefore, calculate the value of equilibrium constant as follows.
![K_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5BCO%5D%5BH_%7B2%7D%5D%5E%7B2%7D%7D)
= 
= 0.173
Thus, we can conclude that equilibrium constant for the given reaction is 0.173.
Properties of a compound is completely different from their elements.
Water is composed by hydrogen and oxygen.
For example, the boiling point of oxygen is - 183 °C and hydrogen is - 253 °C, meanwhile, water has a boiling point of 100°C
Another example is when you put a burning wooden splint into oxygen, it burns more brightly. Put it in hydrogen, you may hear a "pop" sound, or even explode when large amount of hydrogen. But if u put a burning splint in water, it goes off.
Parasitism... basically a tick and a dog. The dog is the host, which is harmed by the tick.
The protons in the atom determine what the atom is. It also determines the atomic number<span>. For example, hydrogen has one proton, so it the atomic number is one. Lithium has an atomic number of three because it has three protons.</span>