Answer:
334.2× 10²³ molecules
Explanation:
Given data:
Mass of water = 1 Kg ( 1000 g )
Number of molecules = ?
Solution:
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 1000 g/ 18 g/mol
Number of moles = 55.5 mol
1 mole contain 6.022× 10²³ molecules
55.5 mol×6.022× 10²³ molecules
334.2× 10²³ molecules
Answer:
1.0 × 10⁻⁹ M.
Explanation:
<em>∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.</em>
[H₃O⁺] = 1.0 x 10⁻⁵ M.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺]</em> = 10⁻¹⁴/(1.0 x 10⁻⁵ M) = <em>1.0 × 10⁻⁹ M.</em>
Answer:
0.4 M
Explanation:
The process that takes place in an aqueous K₂HPO₄ solution is:
First we <u>calculate how many K₂HPO₄ moles are there in 200 mL of a 0.2 M solution</u>:
- 200 mL * 0.2 M = 40 mmol K₂HPO₄
Then we <u>convert K₂HPO₄ moles into K⁺ moles</u>, using the <em>stoichiometric coefficients</em> of the reaction above:
- 40 mmol K₂HPO₄ *
= 80 mmol K⁺
Finally we <em>divide the number of K⁺ moles by the volume</em>, to <u>calculate the molarity</u>:
- 80 mmol K⁺ / 200 mL = 0.4 M
Answer:
The reaction would be 1500n (equal reaction)
Explanation:
This can be explained by Newton's third law of motion which states that for every action (force), there is an opposite and equal reaction. In other words, when two objects or people come in contact, the magnitude of force which they exert on each other is equal and they both feel an equal reaction force.
It doesn't matter whether one of the colliding bodies is of bigger mass than the other. This Newton's third law of motion is also known as the law of action and reaction.
Answer:
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s
Explanation:
You can predict the order of orbital energies by constructing a diagram as shown below.
Follow the arrows to get the orbitals in order of increasing energy.
The order is
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s