Answer: There are several ways. The first that comes to mind is a pH meter. A pH electrode Is lowered into the solution, and (Assuming) the pH Meter has been properly calibrated, and the temperature of the solution is set to the calibration of the Meter, the pH can be read directly from an analogue scale or digital readout. Below 7 is acidic, 7 is Neutral, (like Pure Water), and over 7 is Alkaline, or Basic.
A useful, but less accurate method is the use of any number of “pH Indicator Solutions”, which are essentially a type of various colored dyes that change color within differing pH ranges. Usually, if the pH is unknown, a small amount of solution is removed from the container and tested separately - in a “well plate”, or similar method.
These types of dyes, or Indicator Solutions, can be dried upon strips of “pH indicator Paper”, which, depending upon the type can be very useful when carrying out more precisely arrived at pH tests like Titration.
Just to see if a solution is “Acid” or “Base”, Litmus paper is used; “a Red color shows Acidity, and a Blue color, a Base”; ergo, “An Acid Solution will turn Litmus Paper, Red”.
The law of conservation of mass<span> states that </span>mass<span> in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
</span>
Answer:
At STP, 760mmHg or 1 atm and OK or 273 degrees celcius
Explanation:
The standard temperature and pressure is the temperature and pressure at which we have the molecules of a gas behaving as an ideal gas. At this temperature and pressure, it is expected that the gas exhibits some properties that make it behave like an ideal gas.
This temperature and pressure conform some certain properties on a gas molecule which make us say it is behaving like an ideal gas. Ordinarily at other temperatures and pressures, these properties are not obtainable
Take for instance, one mole of a gas at stp occupies a volume of 22.4L. This particular volume is not obtainable at other temperatures and pressures but at this particular temperature and pressure. One mole of a gas will occupy this said volume no matter its molar mass and constituent elements. This is because at this temperature and pressure, the gas is expected to behave like an ideal gas and thus exhibit the characteristics which are expected of an ideal gas
Answer:
Matter or energy can change from one form to the other
Explanation:
The law of conservation of energy states that energy can neither be created nor destroyed but can only be transformed i.e. changed from one form to another. For example, mechanical energy can be changed to electrical energy.
Likewise, the law of conservation of mass/matter states that matter can not be destroyed or created but can change via physical or chemical means to conserve it. For example, matter can change from liquid state to gaseous state.
From the above two laws, it can be said that "matter or energy can change from one form to the other".