We will use the ideal gas equation:
PV = nRT, where n is moles and equal to mass / Mr
P = mRT/MrV
P = 15.4 x 8.314 x (22.55 + 273) / 32 x 4.44
P = 266.3 kPa
Answer:
6.02×10²³
Explanation:
Mole measures the number of particles in a specific substance. The numeric value of a mole for atom or molecules is approximately 6.02×10²³ atoms or molecules.
You could try the "Spinning Bucket" or the "Center Of Gravity" experiment. There are plenty more that you could research! Hope this helped :)
Answer:
B 14.5 m/s to the east
Explanation:
We can solve this problem by using the law of conservation of momentum.
In fact, if the system is isolated, the total momentum of the system must be conserved.
Here the total momentum before the stuntman reaches the skateboard is:

where
M = 72.0 kg is the mass of the stuntman
v = 15.0 m/s is his initial velocity (to the east)
The total momentum after the stuntmen reaches the skateboard is:

where
m = 2.50 kg is the mass of the skateboard
v' is the final velocity of the stuntman and the skateboard
Since momentum must be conserved, we have

And solvign for v',

And since the sign is the same as v, the direction is the same (to the east).
I'm not sure. But it can be A or C.