Answer:
A. How much matter an object has, plus the magnitude and direction of its motion
Explanation:
Momentum is defined as the product of mass by velocity, in the international system of measurements (SI) momentum has the following Units [kg*m/s].
P = m*v
where:
P = momentum Lineal [kg*m/s]
m = mass [kg]
v = velocity [m/s]
Therefore the answer is A) How much matter an object has, plus the magnitude and direction of its motion
Answer:
0.702 m
Explanation:
The magnitude of the electrostatic force between two charged objects is given by Coulomb's Law:

where
k is the Coulomb's constant
q1, q2 are the two charges
r is the separation between the objects
And the force is:
- Attractive if the two charges have opposite signs (+-)
- Repulsive if the two charges have same sign (++ or --)
In this problem we have:
is the force between the two balls
is the charge on each ball
Solving for r, we find the separation between the balls:

<span>In order to determine the speed of the entire assembly, we employ conservation of momentum. Momentum p = mv where m is the object's mass and v is the velocity.
The putty ball's initial momentum p1 = 0.3kg*6m/s = 1.8 kg*m/s
That momentum is conserved, so the momentum of the new system having mass 0.3 kg + 1.2 kg = 1.5 kg is:
1.8 kg*m/s = 1.5kg*v. Solving for v, we find that the velocity is 1.2 meters/second.</span>
This question involves the concepts of potential difference, inductance, and current.
The minimum time that should be allowed for the current to change is "0.694 ms".
The inductance of an inductor is given by the following formula:

where,
E = potential difference across the inductor = 360 volts
L = inductance of the inductor = 250 mH = 0.25 H
ΔI = change in current = 2.5 A - 1.5 A = 1 A
Δt = time required = ?
Therefore,

<u>Δt = 6.94 x 10⁻⁴ s = 0.694 ms</u>
<u></u>
Learn more about inductance here:
brainly.com/question/17431388?referrer=searchResults
<u></u>
Answer:
Explanation:
1 psi = 6894.76 Pa
P = 184 psi = 12.686 x 10⁵ Pa .
Temperature T = 95⁰F = 35⁰C= 308 K
volume V = 18 ft³ = 18 x 0.0283168 m³
= .51 m³
From the gas law
PV/RT = n where n is mole of gas
= 12.686 x 10⁵ x .51 / 8.31 x 308
= 252.78 gm mole
= 252.78 x 32 gm
= 8.08896 kg
= 2.20462 x 8.08896 lb
= 17.833 lb
= 17.833 / 32 lbf
= .5573 lbf
weight of tank = 150 lbf
Total weight = 150 + .5573
= 150.5573 lbf .