Answer: 78.89%
Explanation:
Given : Sample size : n= 1200
Sample mean : 
Standard deviation : 
We assume that it follows Gaussian distribution (Normal distribution).
Let x be a random variable that represents the shaft diameter.
Using formula,
, the z-value corresponds to 2.39 will be :-

z-value corresponds to 2.60 will be :-

Using the standard normal table for z, we have
P-value = 

Hence, the percentage of the diameter of the total shipment of shafts will fall between 2.39 inch and 2.60 inch = 78.89%
Hi, you haven't provided the programing language in which you need the code, I'll just explain how to do it using Python, and you can apply a similar method for any programming language.
Answer:
1. def pyramid_volume(base_length, base_width, pyramid_height):
2. volume = base_length*base_width*pyramid_height/3
3. return(volume)
Explanation step by step:
- In the first line of code, we define the function pyramid_volume and it's input parameters
- In the second line, we perform operations with the input values to get the volume of the pyramid with a rectangular base, the formula is V = l*w*h/3
- In the last line of code, we return the volume
In the image below you can see the result of calling the function with input 4.5, 2.1, 3.0.
Answer:
"Macro Instruction"
Explanation:
A macro definition is a rule or pattern that specifies how a certain input sequence should be mapped to a replacement output sequence according to a defined procedure. The mapping process that instantiates a macro use into a specific sequence is known as macro expansion.
It is a series of commands and actions that can be stored and run whenever you need to perform the task. You can record or build a macro and then run it to automatically repeat that series of steps or actions.
Answer:
to be or not to be
Explanation:
Vivi is a drummer for a band. She burns 756756756 calories while drumming for 333 hours. She burns the same number of calories each hour.
Answer:
When a pilot pushes the top of the right pedal, it activates the brakes on the right main wheel/wheels, and when the pilot pushes the top of the left rudder pedal, it activates the brake on the left main wheel/wheels. The brakes work in a rather simple way: they convert the kinetic energy of motion into heat energy.