Answer:
The major effects of ice accretion on the aircraft is that it disturbs the flow of air and effects the aircraft's performance.
Explanation:
The ice accretion effects the longitudinal stability of an aircraft as:
1. The accumulation of ice on the tail of an aircraft results in the reduction the longitudinal stability and the elevator's efficacy.
2. When the flap is deflected at
with no power there is an increase in the longitudinal velocity.
3. When the angle of attack is higher close to the stall where separation occurs in the early stages of flow, the effect of ice accretion are of importance.
4. When the situation involves no flap at reduced power setting results in the decrease in aircraft's longitudinal stability an increase in change in coefficient of pitching moment with attack angle.
Answer:
the velocity = 10 m / sec if an object moves 100 m in 10s
Answer:
3) the pressure drop across high MERV filters is significant.
Explanation:
MERV (Minimum-Efficiency Reporting Value) is used to measure the efficiency of filter to remove particles. A filter of high MERV can filter smaller particles but this causes an increase in reduced air flow that is an increase in pressure drop. High MERV filters capture more particles causing them to get congested faster and thereby increasing pressure drop.
Excessive pressure drop can cause overheating and lead to damage of the filter. The pressure drop can be reduced by increasing the surface area of the filter.
Answer: Create lessons learned at the end of the project.
Explanation:
Lessons learned are the experiences that are gotten from a project which should be taken into account for the future projects. Lesson learned are created at the end of the project.
The main objective of the lessons learned is that they show both the positive experience and the negative experience of a project and this will help the future projects that will be undertaken.
Answer:
The settlement that is expected is 1.043 meters.
Explanation:
Since the pre-consolidation stress of the layer is equal to the effective stress hence we conclude that the soil is normally consolidated soil
The settlement due to increase in the effective stress of a normally consolidated soil mass is given by the formula

where
'H' is the initial depth of the layer
is the Compression index
is the inital void ratio
is the initial effective stress at the depth
is the change in the effective stress at the given depth
Applying the given values we get
