Answer: The density of Ammonia is 0.648 g/l
Explanation:
Density = Mass/ Volume
Mass of one mole of Ammonia (NH3) = 17.031g
Volume =?
Using the ideal gas law we can determine the volume.
PV = nRT
P = 0.913 atm, V= ?, n = 1, R = 0.08206 L.atm/K, and T= 293K
Make V the subject of the formular, we then have;
V= nRT/ P = 1 mol x 0.08206 L.atm/ K.mol x 293 / 0.913 atm
V = 24.04358/ 0.913 = 26.3L
Having gotten the value of Volume in this question, we then go back to solve for density.
Density = Mass/ Volume
17.031g/ 26.3L = 0.64756 ≈ 0.648 g/l
Answer:
272.31× 10²³ atom of strontium
Explanation:
Given data:
Number of moles of strontium = 45.22 mol
Number of atoms = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
45.22 mol × 6.022 × 10²³ atom / 1 mol
272.31× 10²³ atom
The concentration of hydrogen ions in a solution is a measure of its acidity. So the correct option is (b) false.
When an Arrhenius acid is dissolved in water, hydrogen ions are produced:
H+(aq) + A- = HA + H2O (aq)
Here, H+ is the hydrogen cation, A- is the solvated anion, also known as the conjugate base, and HA is the non-dissociated acid. When an Arrhenius base is dissolved in water, hydroxide ions are produced:
BOH + H2O → B+(aq) + OH-(aq)
Is a material with at least one hydrogen atom that has the ability to split apart in an aqueous solution to produce an anion and an H + ion (a proton), creating an acidic solution. Bases are substances that, when dissolved in water, create hydroxide ions (OH) and a cation, resulting in a basic solution.
Learn more about hydrogen here:
brainly.com/question/16979348
#SPJ4
Answer:
1. Both are made up of two substances that are chemically combined. 2. oxygen(O2) , 3. CARBON (C) , 4. AIR(N2 nixed with O2 AND CO2), 5. CANNOT BE SEPARATED BY PHYSICAL MEANS
Explanation:
<em>HOPE IT HELPS</em>