W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
Answer:All three states of matter (solid, liquid and gas) expand when heated. ... Heat causes the molecules to move faster, (heat energy is converted to kinetic energy ) which means that the volume of a gas increases more than the volume of a solid or liquid.
Explanation:well I tried lol she just copied and pasted faster than I could
Answer:
The correct option is;
A. The potential energy between both like charges and like poles increases as they move closer together
Explanation:
Here we have that when we move the like poles of two bar magnets close to each other, there is an increased resistance in the continuing motion, therefore for each extra gap closer achieved, there is an increase in potential energy
Similarly, when two like charges are brought closer together, the potential energy, or the energy available to push the two like charges apart increases charge as the as the charges are brought closer together
Therefore, the correct option is the potential energy between both like charges and like poles increases as they move closer together.
There are three main factors that affect wave formation: wind velocity, fetch, and duration.
Waves are most commonly caused by wind. Wind-driven waves, or surface waves, are created by the friction between wind and surface water. As wind blows across the surface of the ocean or a lake, the continual disturbance creates a wave crest.