Answer: Mass of silver deposited at the cathode is 37.1g
Explanation: According to Faraday Law of Electrolysis, the mass of substance deposited at the electrode (cathode or anode) is directly proportional to quantity of electricity passed through the electrolyte
Faraday has found that to liberate one gm eq. of substance from an electrolyte, 96500C of electricity is required.
+e− ==> Ag(s)
Given that
Current (I) = 8.5A
Time (t) = 65 *60 = 3900s
Quantity of electricity passed = 8.5*3900 =33150C
Molar mass of Ag= 108g
96500C will liberate 108g
33150C will liberate Xg
Xg= (108*33150)/96500
=37.1g
Therefore the mass of Ag deposited at the cathode is 37.1g.
Answer: I'm not sure what answer to give you since there are no answer choices, but here is what I got.
Explanation:
Mg is a reducing agent, Fe 2O 3 is an oxidizing agent.
Igniting a mixture of Fe2O3 and Al with a magnesium ribbon fuse produces molten iron and aluminum oxide in an impressive exothermic reaction.
Hope this helped a little:(
The question is incomplete, the complete question is;
In the Energy and Specific Heat lab, you measure the temperature change of water to study the specific heat of a metal. What statement explains the relationship between the water and the metal you are studying? Select one: O The heat lost by the metal plus the heat gained by the water equals 100. O The temperature change of the metal is equal to the temperature change of the water. O The heat lost by the metal is equal to the heat gained by the water. The initial temperature of the metal equals the initial temperature of the water
Answer:
The heat lost by the metal is equal to the heat gained by the water.
Explanation:
When the piece of metal is put into water, heat is lost by the metal and gained by the water.
Recall that energy is conserved hence heat lost by metal must be equal to heat gained by water.
Thus, the relationship between the metal under study and the water is that the metal looses heat to the water and heat lost by metal is equal to heat gained by water.
Answer:
The "unit" remaining after conversion is atoms.
This is a way to calculate the number of atoms, in an specific mass.
Explanation:
When you have a mass, multiplying the molar mass, "grams" are cancelled, so you finally obtained, number of moles.
Moles . atoms/mol, cancel the word mol so you will find out a number of atoms, present at the mass from, the begining.
For example, how many atoms are in 10 g of NaCl
Molar mass NaCl = Na mass + Cl mass
23 + 35.45 = 58.45 g/m
10 g . 1 / 58.45 mol/g . NA/ 1 mol = 3.42x10²⁰ atoms
NA = Avogadro number
The correct answer is the Tyndall effect. This is also known as the Tyndall scattering. It is the light scattering by the particles in a colloid or in a suspension. This phenomenon is used to determine size and density of particles in colloidal matter.