Answer:
The enthalpy of vaporization of water at 273 K and 1 bar = 44.9 KJ/mol
Explanation:
Enthalpy of vaporization of water at 273 K, ΔHvap(T₂) is given as;
ΔHvap(T₂) = ΔHvap(T₁) + ΔCp * (T₂ - T₁)
where ΔCp = molar heat capacity of gas - molar heat capacity of liquid
Therefore, ΔCp = (33.6 - 75.3) = -41.70 J/(mol K) = 0.0417 kJ/(molK)
substituting ΔCp = 0.0417 kJ/(mol K) in the initial formula
;
ΔHvap(T) = ΔHvap(T1) + ΔCp * (T₂ - T₁)
ΔHvap(T₂)= 40.7 kJ/mol + {-0.0417 kJ/(mol K) * (272 - 373 K)}
ΔHvap(T₂) = 44.9 kJ/mol
Therefore, enthalpy of vaporization of water at 273 K and 1 bar = 44.9kJ/mol
Elevated carbon dioxide mean too much acid in the blood. <span>Increase acid excretion (intercalated cells secrete H+ into tubules) and decrease bicarbonate excretion. They also make new bicarbonate to add to the plasma.</span>
Answer:
Mass = 1274 .64 g it would be option C if it is converted into kilogram
1274 .64 / 1000 = 1.27 Kg
Explanation:
Given data:
Number of moles of C₂₀H₄₂ = 4.52 mol
Molar mass of carbon = 12 g/mol
Molar mass of hydrogen = 1.0 g/mol
Mass of C₂₀H₄₂ = ?
Solution:
Number of moles = mass / molar mass
Molar mass = 20× 12 + 42× 1.0 = 282 g/mol
Now we will put the values in formula:
Number of moles = mass / molar mass
4.52 mol = mass / 282 g /mol
Mass = 4.52 mol × 282 g/mol
Mass = 1274 .64 g
Beta radiation / decay would likely occur when the ratio of protons to neutrons is below the band of stability.
If egg is dipped in cylinder then the volume of egg will be difference in the volumes before dipping egg (initial volume) and volume after dipping egg (final volume)
Volume of egg= 58.5-50.0 = 8.5 mL