Explanation:
Let us assume that Z is the energy transported across an area of
per hour by an electromagnetic wave with an r.m.s speed of 21.5 V/m.
Therefore, first we will calculate the current as follows.
I =
= 
= 0.441 J
Therefore, we can conclude that 0.441 J energy is transported across a given EM wave.
Answer:
b.) Length
Explanation:
The length of the string can be changed by removing it from the slotted bracket and placing it back in. You can change the mass by varying the number of washers on the mass hanger. The amplitude can be changed by varying the starting angle of the pendulum (low, medium, and high angle). sorry if wrong
Answer:
This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.
I have three problems with this question.
#1). If you copied the question exactly the way it's written,
then the question is written very badly. The wording is
misleading, and the more you try to think about it and
puzzle it out, the more it'll damage your understanding
of Physics.
There is no relationship between the force exerted on an
elevator and the distance the elevator is lifted.
-- If the force is anything more than the weight of the elevator ...
even one ounce more ... then it'll lift the elevator as high as
you want.
-- If the force is anything less than the weight of the elevator ...
even one ounce less, then that elevator is headed for the bottom.
#2). You didn't post any graph below, so if we need the graph
to answer the question, then we can't answer the question.
#3). I guess that's OK, because you didn't ask any question.