We could use solar power, wind power, geothermal power, hydroelectric power, or nuclear power. There are probably more but this is what I can think of off the top of my head. I hope this helps. Let me know if anything is unclear.
Answer:

Explanation:
Hello,
In this case, for a concentration of 0.42 M of benzoic acid whose Ka is 6.3x10⁻⁵ in 0.33 M sodium benzoate, we use the Henderson-Hasselbach equation to compute the required pH:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the concentration of the base is 0.33 M and the concentration of the acid is 0.42 M, thereby, we obtain:
![pH=-log(Ka)+log(\frac{[base]}{[acid]} )\\\\pH=-log(6.3x10^{-5})+log(\frac{0.33M}{0.42M} )\\\\pH=4.1](https://tex.z-dn.net/?f=pH%3D-log%28Ka%29%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29%5C%5C%5C%5CpH%3D-log%286.3x10%5E%7B-5%7D%29%2Blog%28%5Cfrac%7B0.33M%7D%7B0.42M%7D%20%29%5C%5C%5C%5CpH%3D4.1)
Regards.
Answer: 97
Explanation:
The element Ru is <u>Ruthenium</u> which has <u>44 protons</u>.
In this case, our atom is an isotope with <u>53 neutrons</u>.
With this information, we can use the mass number formula to find this atom's mass number.
mass number = protons + neutrons
mass number = <u>44 protons</u> + <u>53 neutrons</u>
mass number = <u>97</u>