The value of the equivalent resistance for the three resistors connected in series will be the sum of the three values.
To find the answer, we have to know more about the equivalent resistance.
<h3>
What is meant by equivalent resistance?</h3>
- equivalent resistance is the total value of the resistance connected in a circuit.
- If n resistors are connected in series, then the equivalent resistance will be,

- In our question we have three resistors. Thus, the equivalent resistance will be,

Thus, we can conclude that, the value of the equivalent resistance for the three resistors connected in series will be the sum of the three values.
Learn more about the equivalent resistance here:
brainly.com/question/11603204
#SPJ4
Answer:
1. Ultraviolet light (UV)
2. X-rays
3. Gamma-rays
Explanation:
Though there are different types of energy or electromagnetic waves with varying wavelengths, including the likes of Gamma X-rays, ultraviolet light, visible light, infrared radiation, and microwave radiation.
What is more certain is that the atmosphere blocked the high-energy waves from getting to the earth surface or biosphere such as Ultraviolet light (UV), X-rays and Gamma-rays
Answer:
A) 1568.60 Hz
B) 1437.15 Hz
Explanation:
This change is frequency happens due to doppler effect
The Doppler effect is the change in frequency of a wave in relation to an observer who is moving relative to the wave source

where
C = the propagation speed of waves in the medium;
Vr= is the speed of the receiver relative to the medium,(added to C, if the receiver is moving towards the source, subtracted if the receiver is moving away from the source;
Vs= the speed of the source relative to the medium, added to C, if the source is moving away from the receiver, subtracted if the source is moving towards the receiver.
A) Here the Source is moving towards the receiver(C-Vs)
and the receiver is standing still (Vr=0) therefore the observed frequency should get higher

B)Here the Source is moving away the receiver(C+Vs)
and the receiver is still not moving (Vr=0) therefore the observed frequency should be lesser
