Answer:
False
Explanation:
As we know that, the Balmer series gives the n values as,
.
.
Now the value of wavelength can be calculated as,
.
Here,
.
And
.
Now,
.
Therefore,

Therefore, the wavelength of Balmer series lies in visible region which is 547 nm.
Static electricity<span> is caused by the build up of </span>electrical<span> charges on the surface of objects, while </span>current electricity<span> is a phenomenon from the flow of electrons along a conductor. 2. When objects are rubbed, a loss and/or gain of electrons occurs, which results in the phenomenon of </span>static electricity<span>.</span>
Answer:
We want to describe how to graph a linear equation.
Explanation:
The given equation is:
y = -4x - 1
a) To graph it, we need to find two points that belong to the line, then we graph the points, and then we connect them with a line.
To get the points, we just need to evaluate the function in two different values of x.
for x = 0
y = -4*0 - 1 = -1
So we have the point (0, -1)
for x = 1
y = -4*1 - 1 = -5
So we have the point (1, - 5)
Now we just need to find these two points and connect them with a line, the graph can be seen below.
b) To check if the graph is correct we can see two things:
in y = -4*x - 1
The y-intercept is -1, this means that the graph should intersect the y-axis at y = -1
The slope is -4, this means that for each unit increase on x, we should see that the y-value decreases by 4.
Checking those two things we can see if our graph is correct or not.
pls give brainliest!
<u>Answer</u>
D. 1,500 m/s
<u>Explanation</u>
the wave equation states that,
V = λf
Where V ⇒ Velocity
λ ⇒ wavelength
f ⇒ Frequency
F = 1/T
Where T ⇒ period
F = 1/0.006
= 166.667
∴ V = 9 × 166.667
= 1,500 m/s
Answer:
The tension in the two ropes are;
T1 = 23.37N T2 = 35.47N
Explanation:
Given mass of the object to be 4.2kg, the weight acting on the bag will be W= mass × acceleration due to gravity
W = 4.2×10 = 42N
The tension acting on the bag plus the weight are three forces acting on the bag. We need to find tension in the two ropes that will keep the object in equilibrium.
Using triangular law of force and sine rule to get the tension we have;
If rope 1 is at 57.6° with respect to the vertical and rope 2 is at 33.8° with respect to the vertical, our sine rule formula will give;
T1/sin33.8° = T2/sin57.6° = 42/sin{180-(33.8°+57.6°)}
T1/sin33.8° = T2/sin57.6° = 42/sin88.6°
From the equality;
T1/sin33.8° = 42/sin88.6°
T1 = sin33.8°×42/sin88.6°
T1 = 23.37N
To get T2,
T2/sin57.6°= 42/sin88.6°
T2 = sin57.6°×42/sin88.6°
T2 = 35.47N
Note: Check attachment for diagram.