1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zarrin [17]
3 years ago
9

A circular loop of wire with a radius of 15.0 cm and oriented in the horizontal xy-plane is located in a region of uniform magne

tic field. A field of 1.5 T is directed along the positive z-direction, which is upward. Of the loop is removed from the field region in a time interval of 2.8 ms , find the average emf that will be induced in the wire loop during the extraction process.
Physics
1 answer:
kati45 [8]3 years ago
5 0

Answer:

The average emf that will be induced in the wire loop during the extraction process is 37.9 V

Explanation:

The average emf induced can be calculated from the formula

Emf = -N\frac{\Delta \phi}{\Delta t}

Where N is the number of turns

\Delta \phi is the change in magnetic  flux

\Delta t is the time interval

The change in magnetic flux is given by

\Delta \phi = \phi _{f} - \phi _{i}

Where \phi _{f} is the final magnetic flux

and \phi _{i} is the initial magnetic flux

Magnetic flux is given by the formula

\phi = BAcos(\theta)

Where B is the magnetic field

A is the area

and \theta is the angle between the magnetic field and the area.

Initially, the magnetic field and the area are pointed in the same direction, that is, \theta = 0^{o}

From the question,

B = 1.5 T

and radius = 15.0 cm = 0.15 m

Since it is a circular loop of wire, the area is given by

A = \pi r^{2}

∴ A = \pi (0.15)^{2}

A = 0.0225\pi

∴\phi_{i}  = (1.5)(0.0225\pi)cos(0^{o} )

\phi_{i}  = (1.5)(0.0225\pi)

( NOTE: cos (0^{o}) = 1 )

\phi_{i}  = 0.03375\pi Wb

For \phi_{f}

The field pointed upwards, that is \theta = 90^{o}. Since cos (90^{o}) = 0

Then

\phi_{f} = 0

Hence,

\Delta \phi = 0- 0.03375\pi

\Delta \phi = - 0.03375\pi

From the question

\Delta t = 2.8 ms = 2.8 \times 10^{-3} s

Here, N = 1

Hence,

Emf = -N\frac{\Delta \phi}{\Delta t} becomes

Emf = -(1)\frac{-0.03375\pi}{2.8 \times 10^{-3} }

Emf = 37.9 V

Hence, the average emf that will be induced in the wire loop during the extraction process is 37.9 V.

You might be interested in
Calculate the momentum of a 1,500 kg car traveling at 6 m/s.
mamaluj [8]

Answer: 9000 kgm/s

Explanation:

Mass of car = 1500 kg

Speed by which car moves = 6 m/s. Momentum of the car = ?

Recall that:

Linear momentum = Mass x Speed

= 1500kg x 6m/s

= 9000 kgm/s

Thus, the linear momentum of the car is 9000 kgm/s

3 0
4 years ago
The rms current in an ac current is 3.6<br> a. find the maximum current
LUCKY_DIMON [66]
A peak = A Rms x Sq root 2

Therefore 3.6 x sq root of 2
A peak = 5.09
7 0
3 years ago
A politician running for office tells a crowd at a rally that the only way to keep the food chain safe is to stop allowing the g
olasank [31]

Answer:

B. No. He presented no scientific data to support his claim.

6 0
3 years ago
Deaths due to lifestyle diseases have declined since the early 1900s.<br><br> T<br> F
zavuch27 [327]

Answer:

<h2>False</h2>

Explanation:

Hope this helps! Please consider marking brainliest! Always remember, your smart and you got this! -Alycia :)

7 0
3 years ago
A 94 g particle undergoes SHM with an amplitude of 8.3 mm, a maximum acceleration of magnitude 7.8 x 103 m/s2, and an unknown ph
Lelechka [254]

Answer:

a) T = 6.49*10^-3 s

b) v = 8 m/s

c) E = 3 J

d) F = 733 N

e) F = 366.5 J

Explanation:

Given

Mass of particle, m = 94 g = 0.094 kg

Amplitude of the particle, A = 8.3 mm = 8.3*10^-3 m

Maximum acceleration of particle, a = 7.8*10^3 m/s²

the equation describing Simple Harmonic Motion is given as

x = A cos (wt +φ)

To fond the acceleration of this relationship, we would have to integrate. Twice, the first would be a Velocity, and the second acceleration that we need.

Velocity = dx/dt = -Aw sin(wt + φ)

Acceleration = d²x/dt = -Aw² cos(wt + φ)

From the question, we were given, magnitude of acceleration to be 7.8*10^3 m/s²

Aw² = 7.8*10^3

w² = 7.8*10^3 / A

w² = 7.8*10^3 / 8.3*10^-3

w² = 939759

w = √939759

w = 969

Recall, T = 2π/w, so that

T = (2 * 3.142) / 969

T = 6.49*10^-3 s

Maximum speed = Aw

Maximum speed = 8.3*10^-3 * 969

Maximum speed = 8.0 m/s

Total mechanical energy oscillator =

mgx + 1/2mx² =

1/2mv(max)² =

1/2 * 0.094 * 8² =

3 J

Maximum displacement

x = A cos(wt + φ)

For x to be maximum here, then cos(wt + φ) Must be equal to 1

Acceleration = d²x/dt² = -Aw²

And force = mass * acceleration

Force = 0.094 * 7.8*10^3

Force = 733 N

x = A cos(wt + φ), where cos(wt + φ) = 1/2

d²x/dt² = -Aw² * 1/2

d²x/dt² = 733 * 0.5

= 366.5 N

7 0
3 years ago
Other questions:
  • HELP ME PLEASE!
    6·1 answer
  • Carole is very tired and makes coffee. Why would Newton say that she must use her hand to pick up the cup? A) The idiom that eve
    10·2 answers
  • Scientists believe the universe follows a set of “rules” known as?
    12·1 answer
  • How was Pluto discovered? Why did it take so long to find it?
    5·1 answer
  • Given two vectors A⃗ =−2.00i^+ 4.00 j^+ 4.00 k^ and B⃗ = 1.00 i^+ 2.00 j^−3.00k^, do the following.
    5·1 answer
  • a water wav e has frequency of 2hz and there are 3 meters between each crest on the wave. how fast is the wave moving
    12·1 answer
  • A __________ psychologist helps children with learning problems and works with teachers and parents to create healthy learning e
    7·2 answers
  • A rifle is fired in a valley with parallel vertical walls. The echo from one wall is heard 1.55 s after the rifle was fired. The
    7·1 answer
  • A particle initially located at the origin has an acceleration of = 2.00ĵ m/s2 and an initial velocity of i = 8.00î m/s. Find (a
    7·1 answer
  • If Mia ran 15 meters at a speed of 5 m/s, how long did it take her?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!