Answer: 5.96m/s
Explanation:
Given the following :
Mass of car (m) = 1500kg
Velocity (V) = 5.25m/s
Forward force of engine = 1250N
Diatance moved = 4.8m
Final Velocity =?
Final kinetic energy = Initial kinetic energy + work done by engine
Initial kinetic energy = 0.5 × mass × velocity^2
Initial kinetic energy = 0.5 × 1500 × 5.25^2
Initial kinetic energy = 20671.875 J
Work done by engine = Force × distance
Work done by engine = 1250 × 4.8 = 6000J
Final kinetic energy = (20671.875 + 6000) J
= 26671.875 J
From kinetic energy = 0.5mv^2
26671.875 = 1/2 × 1500 × v^2
53343.75 = 1500v^2
v^2 = 35.5625
v = sqrt(35.5625)
v = 5.96m/s
Answer:
The man moves across the ice with a speed of 0.345m/s.
Explanation:
From the conservation of linear momentum, we have that the total linear momentum before the book throw is equal to the total linear momentum just after it. Since the initial velocity of the system is zero (so the initial momentum is zero), we have that:

Where
is the mass of the man,
is the mass of the book, and
and
are their velocities. Plugging in the given values, we can compute the speed of the man (ignoring the negative sign, because we care about the magnitude, not the direction):

In words, the resulting speed of the man is 0.345m/s.
Explanation:
The given data is as follows.
C =
R =
ohm
C
Q =
Formula to calculate the time is as follows.
0.135 =
= 7.407
t = 4.00 s
Therefore, we can conclude that time after the resistor is connected will the capacitor is 4.0 sec.
Answer:
kinetic energy
Explanation:
a certain amount of energy is transferred by the kick. The ball gains an equal amount of energy, mostly in the form of kinetic energy.
Answer:
option (b) 4900 N
Explanation:
m = 2000 kg, R = 6380 km = 6380 x 10^3 m, Me = 5.98 x 10^24 kg, h = R
F = G Me x m / (R + h)^2
F = G Me x m / 2R^2
F = 6.67 x 10^-11 x 5.98 x 10^24 x 2000 / (2 x 6380 x 10^3)^2
F = 4900 N