Answer:
the value of H° is below -6535 kj. +6H2O
Explanation:
6H2O answer solved
Answer: acid dissociation constant Ka= 2.00×10^-7
Explanation:
For the reaction
HA + H20. ----> H3O+ A-
Initially: C. 0. 0
After : C-Cx. Cx. Cx
Ka= [H3O+][A-]/[HA]
Ka= Cx × Cx/C-Cx
Ka= C²X²/C(1-x)
Ka= Cx²/1-x
Where x is degree of dissociation = 0.1% = 0.001 and c is the concentration =0.2
Ka= 0.2(0.001²)/(1-0.001)
Ka= 2.00×10^-7
Therefore the dissociation constant is
2.00×10^-7
Answer:
The molecular formula of the compound :
Explanation:
The empirical formula of the compound =
The molecular formula of the compound =
The equation used to calculate the valency is :

We are given:
Mass of molecular formula = 86 g/mol
Mass of empirical formula = 43 g/mol
Putting values in above equation, we get:

The molecular formula of the compound :

<span>the following element that is most reactive </span>would be Fluorine