The answer is : <span>Planetesimals, protoplanets, planets. This is the order of the celestial body from earliest to latest. </span><span>A </span>protoplanet<span> is a massive object that will eventually become a planet. </span><span>They are at first formed by the accumulation of </span>planetesimals<span> into </span>protoplanets<span>, then into planets.</span>
Answer:
3.73 * 10^16 photons/sec
Explanation:
power supply = 3.0 V
Emits 440 nm blue light
current in LED = 11 mA
efficiency of LED = 51%
<u>Calculate the number of photons per second the LED will emit </u>
first step : calculate the energy of the Photon
E = hc / λ
=( 6.62 * 10^-34 * 3 * 10^8 ) / 440 * 10^-9
= 0.0451 * 10^-17 J
Next :
Number of Photon =( power supply * efficiency * current ) / energy of photon
= ( 3 * 0.51 * 11 * 10^-3 ) / 0.0451 * 10^-17
= 3.73 * 10^16 photons/sec
The best answer between the two options would be the second choice B) FALSE.
Answer:
3.0 seconds
Explanation:
The time of flight of a projectile (the time it takes to reach the ground) does not depend on the horizontal motion, but only on its vertical motion.
In fact, the time of flight is determined by the suvat equation:

where
s is the vertical displacement
u is the initial vertical velocity (0, in case of these two projectiles)
g = 9.8 m/s^2 is the acceleration of gravity (assuming downward as positive direction)
t is the time of flight
Re-arranging the equation, we get

We see that this time depends only on s (the heigth of the cliff) and g: therefore, since the two projectiles are launched from the same height, they take the same time to reach the ground, 3.0 seconds.
Answer:
The correct equation for calculating force is change in momentum divided by time. So 10 kg m/s divided by 3 s is 3.3 newtons (N
Explanation: