From the answers provided, I believe the possible answer would be the last option, silicon, oxygen, and one or more metals. Here's my reasoning: the most abundant mineral group found in the Earth's crust is the silicate group. The silicate materials contain both oxygen and silicon. Silicates are the most common minerals in the rock-formation process, and it has, in fact, been estimated that they make up 75 to 90 percent of the Earth's crust. From this piece of evidence, I can guess that the answer will possibly be D, silicon, oxygen, and one or more metals.
It should also be noted that the additional elements that combine with the silicon-oxygen tetrahedron are involved with the other elements commonly found in the Earth's crust and mantle. They are aluminum, calcium, iron, magnesium, potassium and sodium.
Answer:
0.0613°C
Explanation:
the given parameters are m=15gm=15×10⁻³ V₁=865m/s V₂=534m/s
the bullet moves with different kinetic energies before and after the penetration, therefore
Kinetic energy before - kinetic energy after = 1/2 × m × ( V₁² - V₂²)
=
× 15×10⁻³ × (865² - 534²)
= 3.47 × 10⁻³J
this loss in energy is transferred to the water, therefore
change in temperature = ![\frac{Q}{m C}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7Bm%20%20C%7D)
where c = heat capacity of water = 4.19 x 10^3
m = mass of water = 13.5 kg
= {3.47 × 10⁻³} / {13.5 x 4.19 x 10^3 }
=0.0613°C
Jasper, because he developed friendships playing with everyone last year,
Thats the answer
Your answer would be total number of atoms! This is because when you have these equations which require total number of atoms.
Answer:
Explanation:
Diameter of pool = 12 m
radius of pool, r = 6 m
Total height raised, h = 3 + 2.5 = 5.5 m
density of water, d = 1000 kg/m³
Mass of water, m = Volume of water x density
m = πr²h x d
m = 3.14 x 6 x 6 x 5.5 x 1000
m = 113040 kg
Work = m x g x h
W = 113040 x 9.8 x 5.5
W = 6092856 J