<span>............D. Elliptical</span>
Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
Answer:
The manufacturer of a 9V dry-cell flashlight battery says that the battery will deliver 20 mA for 80 continuous hours. During that time the voltage will drop from 9V to 6V. Assume the drop in voltage is linear with time. How much energy does the battery deliver in this 80 h interval?
Explanation:
The answer is Convoluted endoplasmic reticulum
Power is defined as
P = I*V
where I is the current and V is the voltage
Ohm's law gives us the relation betwen Voltage and current in a resistive component
V = I*R , Then
P = V² / R
We solve for R,
R = (110 V)²/ 75W = 161.33 ohms