1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
3 years ago
12

A stick is resting on a concrete step with 2/5 of its length hanging over the edge. A single ladybug lands on the end of the sti

ck hanging over the edge, and the stick begins to tip. A moment later, a second, identical ladybug lands on the other end of the stick, which results in the stick coming momentarily to rest 41.3° from the horizontal. If the mass of each bug is 3.43 times the mass of the stick and the stick is 18.7 cm long, what is the magnitude of the angular acceleration of the stick at the instant?
Physics
1 answer:
Trava [24]3 years ago
3 0
The moment the stick comes to rest at θ=62.1° from horizontal. 

<span>Angular acceleration = (net torque) / (moment of inertia) </span>
<span>α = τ/I </span>

<span>We have to add up the torques due to the bugs and the stick; and add up the moments of inertia due to all three also. </span>

<span>Let L be the stick's length and let m be the stick's mass (so "2.75m" is each bug's mass). And let's say the "lower" ladybug is on the left. Then the lower ladybug exerts this much torque: </span>

<span>τ_lowerbug = −(2/5)L(2.75mg)cosθ (negative because I am (arbitrarily) choosing counter-clockwise as the negative angular direction). </span>

<span>The upper ladybug exerts this much torque: </span>

<span>τ_upperbug = +(3/5)L(2.75mg)cosθ </span>

<span>The weight of the stick can be assumed to act through its center, which is 1/10 of the way from the fulcrum. So the stick exerts this much torque: </span>

<span>τ_stick = +(1/10)L(mg)cosθ </span>

<span>The net torque is thus: </span>

<span>τ_net = τ_lowerbug + τ_upperbug + τ_stick </span>
<span>= −(2/5)L(2.75mg)cosθ + (3/5)L(2.75mg)cosθ + (1/10)L(mg)cosθ </span>
<span>= (2.75(3/5−2/5)+1/10)(mgL)cosθ </span>

<span>Now for the moments of inertia. The bugs can be considered point masses of "2.75m" each. So for each of them you can use the simple formula: I=mass×R²: </span>

<span>I_lowerbug = (2.75m)((2/5)L)² = (2.75m)(4/25)L² </span>
<span>I_upperbug = (2.75m)((3/5)L)² = (2.75m)(9/25)L² </span>

<span>For the stick, we can use the parallel axis theorem. This says, when rotating something about an axis offset a distance "R" from its center of mass, the moment of inertia is: </span>

<span>I = I_cm + mR² </span>

<span>We know that for a stick about its center of mass, I_cm is (1/12)mL² (see many sources). And in this problem we know that it's offset by R=(1/10)L. So: </span>

<span>I_stick = (1/12)mL² + m((1/10)L)² </span>
<span>= (1/12)mL² + (1/100)mL² </span>
<span>= (7/75)mL² </span>

<span>So the total moment of inertia is: </span>

<span>I_total = I_lowerbug + I_upperbug + I_stick </span>
<span>= (2.75m)(4/25)L² + (2.75m)(9/25)L² + (7/75)mL² </span>
<span>= (2.75(4/25+9/25)+7/75)mL² </span>

<span>So that means the angular acceleration is: </span>

<span>α = τ_net/I_total </span>
<span>= ((2.75(3/5−2/5)+1/10)(mgL)cosθ)/((2.75(4... </span>

<span>The "m" cancels out. You're given "L" and "θ" and you know "g", so do the math (and don't forget to use consistent units).</span>
You might be interested in
Which best describes the motion of air particles when a transverse wave passes through them?
Minchanka [31]
C.
The particles move perpendicular to the direction of the wave.
3 0
3 years ago
1. boiling point of water
melomori [17]

Answer:

what is the question. . .

5 0
2 years ago
Which example describes a nonrenewable resource?
In-s [12.5K]
The refineries that use the oil to put in their cars as gasoline and then after a while the oil will disappear and go away and that's what a nonrenewable resource would be
6 0
3 years ago
Read 2 more answers
Any magnetic properties occur _____________
lyudmila [28]

Answer:

wen you stick to mangnetits togater

Explanation:

7 0
3 years ago
Read 2 more answers
Light moves at a speed of around 1 million miles per hour<br>O<br>True<br>False​
AURORKA [14]

Answer:

False

Explanation:

In miles per hour, light speed is about 670,616,629 mph

5 0
3 years ago
Read 2 more answers
Other questions:
  • A stunt man is being pulled, at a constant velocity, along a rough road by a cable attached to a truck. The cable is parallel to
    11·2 answers
  • Is there proof of the existence of God and Satan?If so what proof?
    7·1 answer
  • HURRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRY
    11·2 answers
  • How many photons with 10 ev are required to produce 20 joules of energy?
    11·1 answer
  • Gamma rays x rays visible light and radio waves are all types of
    8·1 answer
  • A moving object has a kinetic energy of 150 j and a momentum with a magnitude of 30.0 kg•m/s. determine the mass and speed of th
    7·1 answer
  • A metal ball attached to a spring moves in simple harmonic motion. The amplitude of the ball's motion is 11.0 cm, and the spring
    14·1 answer
  • Two UFPD are patrolling the campus on foot. To cover more ground, they split up and begin walking in different directions. Offic
    14·1 answer
  • A glass of milk has what kind of energy?
    9·1 answer
  • Help plz i have until 4.20 plz
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!