1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentinak56 [21]
2 years ago
8

Please help me find the equations guys

Physics
1 answer:
Alexeev081 [22]2 years ago
4 0

The line at the bottom of the picture ... probably the first line on a list of choices  .. is the correct equation.

You might be interested in
A sample of helium (He) occupies 8.0 liters at 1 atm and 20.0◦C. What pressure is necessary to change the volume to 1.0 liters a
nevsk [136]

Apply the combined gas law

PV/T = const.

P = pressure, V = volume, T = temperature, PV/T must stay constant.

Initial PVT values:

P = 1atm, V = 8.0L, T = 20.0°C = 293.15K

Final PVT values:

P = ?, V = 1.0L, T = 10.0°C = 283.15K

Set the PV/T expression for the initial and final PVT values equal to each other and solve for the final P:

1(8.0)/293.15 = P(1.0)/283.15

P = 7.7atm

7 0
3 years ago
How does the increasing mass effect the force of an object in motion?​
irina [24]

Answer:

<u>According </u><u>to </u><u>second </u><u>law </u><u>of </u><u>motion</u><u>,</u><u>t</u><u>he acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.</u>

<em>So </em><em>simply</em><em>,</em><em> </em><em>it </em><em>can </em><em>be </em><em>affected </em><em>due </em><em>to </em><em>increasing </em><em>force </em><em>as </em><em>there </em><em>is </em><em>close </em><em>relationship </em><em>between </em><em>momentum.</em>

Explanation:

<em>The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.</em>

<em>I </em><em>hope </em><em>it </em><em>was </em><em>helpful </em><em>for </em><em>you </em><em>:</em><em>)</em>

7 0
1 year ago
A spherical, conducting shell of inner radius r1= 10 cm and outer radius r2 = 15 cm carries a total charge Q = 15 μC . What is t
lutik1710 [3]

a) E = 0

b) 3.38\cdot 10^6 N/C

Explanation:

a)

We can solve this problem using Gauss theorem: the electric flux through a Gaussian surface of radius r must be equal to the charge contained by the sphere divided by the vacuum permittivity:

\int EdS=\frac{q}{\epsilon_0}

where

E is the electric field

q is the charge contained by the Gaussian surface

\epsilon_0 is the vacuum permittivity

Here we want to find the electric field at a distance of

r = 12 cm = 0.12 m

Here we are between the inner radius and the outer radius of the shell:

r_1 = 10 cm\\r_2 = 15 cm

However, we notice that the shell is conducting: this means that the charge inside the conductor will distribute over its outer surface.

This means that a Gaussian surface of radius r = 12 cm, which is smaller than the outer radius of the shell, will contain zero net charge:

q = 0

Therefore, the magnitude of the electric field is also zero:

E = 0

b)

Here we want to find the magnitude of the electric field at a distance of

r = 20 cm = 0.20 m

from the centre of the shell.

Outside the outer surface of the shell, the electric field is equivalent to that produced by a single-point charge of same magnitude Q concentrated at the centre of the shell.

Therefore, it is given by:

E=\frac{Q}{4\pi \epsilon_0 r^2}

where in this problem:

Q=15 \mu C = 15\cdot 10^{-6} C is the charge on the shell

r=20 cm = 0.20 m is the distance from the centre of the shell

Substituting, we find:

E=\frac{15\cdot 10^{-6}}{4\pi (8.85\cdot 10^{-12})(0.20)^2}=3.38\cdot 10^6 N/C

4 0
3 years ago
A series LR circuit contains an emf source of 19 V having no internal resistance, a resistor, a 22 H inductor having no apprecia
masha68 [24]

Answer: R = 394.36ohm

Explanation: In a LR circuit, voltage for a resistor in function of time is given by:

V(t) = \epsilon. e^{-t.\frac{L}{R} }

ε is emf

L is indutance of inductor

R is resistance of resistor

After 4s, emf = 0.8*19, so:

0.8*19 = 19. e^{-4.\frac{22}{R} }

0.8 = e^{-\frac{88}{R} }

ln(0.8) = ln(e^{-\frac{88}{R} })

ln(0.8) = -\frac{88}{R}

R = -\frac{88}{ln(0.8)}

R = 394.36

In this LR circuit, the resistance of the resistor is 394.36ohms.

7 0
3 years ago
when do you use cos and sin in situations like these? is horizontal always cos and vertical always sin?
Andreas93 [3]

Answer:

yes

Explanation:

this is simple

the horizontal line is adjacent

the vertical line is opposite

recall that cos x=adj/hyp

adj=hyp(cos x)

while opp=hyp(sin x)

8 0
3 years ago
Other questions:
  • _____ is an electronics standard that allows different kinds of electronic instruments to communicate with each other and with c
    12·1 answer
  • What happens inside someone's body when they danve
    13·1 answer
  • The eagle drops the trout a height of 6.1 m the fish travels 7.9 m horizontaly before hitting the water what is the velocity of
    6·1 answer
  • All of the following are examples of suspensions except:
    12·2 answers
  • Need help in Psychology. Please help! Which of the following statements best describes abductive reasoning? A.I think,therefore
    11·1 answer
  • Substances that prevent certain chemical reactions are called ___.
    9·1 answer
  • What happens to the air resistance on a car as it speeds up? A) decreases b)stays the same C)it changes direction of the car D)i
    7·1 answer
  • You Fire A Bullet Into A 3 Kg Wooden Block Attached To A Spring With Spring Constant 70 N/m. When The Bullet Strikes The Block,
    9·1 answer
  • A 1100 kg car pushes a 1800 kg truck that has a dead battery. When the driver steps on the accelerator, the drive wheels of the
    7·1 answer
  • Filament bulbs give off lots of __________ that transfers wasted energy to the surroundings. What word completes the sentence?​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!