I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
The idea that <span>Max Planck propose to help explain why a blackbody radiator did not give off light of increasingly high frequency as its temperature increased is that </span>C. Matter can absorb light only in certain specific amounts.
Answer:
Hello your question is incomplete hence I will give you a general answer on how A van de Graaff generator works
answer :
If the electrons falls through a PD of 150mV the electron will gain energy of 150MeV
Explanation:
when a Van de Graff generator is used to accelerate an electron through a PD ( potential difference ) of any value the particle ( electron ) the electron will gain energy ( eV ) which is is equivalent in value of the PD it accelerated through
hence if the electrons falls through a PD of 150mV the electron will gain energy of 150MeV
Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s