Because it’s cheaper and efficient
<h2>
Answer: Toward the center of the circle.</h2>
This situation is characteristic of the uniform circular motion , in which the movement of a body describes a circumference of a given radius with constant speed.
However, in this movement the velocity has a constant magnitude, but its direction varies continuously.
Let's say
is the velocity vector, whose direction is perpendicular to the radius
of the trajectory, therefore
the acceleration
is directed toward the center of the circumference.
Answer:
The acceleration of the collar is 10 m/s²
Explanation:
Given;
mass of the collar, m = 1 kg
applied force on the bar, F = 10 N
The acceleration of the collar can be calculated by applying Newton's second law of motion;
F = ma
where;
F is the applied force
m is mass of the object
a is the acceleration
a = F / m
a = 10 / 1
a = 10 m/s²
Therefore, the acceleration of the collar is 10 m/s²
An elastic collision is one in which the system does not experience a net loss of kinetic energy as a result of the collision. In elastic collisions, momentum and kinetic energy are both conserved.
<h3>Explain about the Elastic Collision?</h3>
A collision between two bodies in physics is referred to as an elastic collision if their combined kinetic energy stays constant. There is no net conversion of kinetic energy into other forms, such as heat, noise, or potential energy, in an ideal, fully elastic collision
An example of an elastic collision is when two balls collide at a pool table. It is an elastic collision when you throw a ball on the ground and it bounces back into your hand because there is no net change in the kinetic energy.
If there is no kinetic energy lost in the impact, the collision is said to be perfectly elastic. A collision is considered to be inelastic if any of the kinetic energy is converted to another kind of energy during the collision.
To learn more about Elastic Collision refer to:
brainly.com/question/7694106
#SPJ4