1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mandarinka [93]
3 years ago
10

A wire of length 26.0 cm carrying a current of 5.77 mA is to be formed into a circular coil and placed in a uniform magnetic fie

ld B of magnitude 3.67 mT. If the torque on the coil from the field is maximized, what is the magnitude of that maximum torque
Physics
1 answer:
Olin [163]3 years ago
7 0

Answer:

The maximum torque is  \tau_{max} =  1.139 *10^{-7} \ N \cdot m

Explanation:

From the question we are told that

   The length of the wire is  l =  26.0 \ cm  =  0.26 \  m

     The current flowing through the wire is  I  = 5.77mA  =  5.77 *10^{-3} \ A

      The magnetic field is  B = 3.67 \ mT  =  3.67 *10^{-3 } T

         

The maximum torque is mathematically evaluated as

        \tau_{max} =   \mu B  

Where \mu  is the magnetic dipole moment which is mathematically represented as

        \mu  =  \frac{I l^2}{4 \pi n }

Where n is the number of turns which from the question is  1

    substituting values

       \mu  =  \frac{ 5.77 *10^{-3}  *  0.26^2}{4  * 3.142* 1 }

     \mu  =  3.10 4*  10^{-5}  A m^2

Now  

      \tau_{max} =  3.104 *10^{-5} * 3.67 *10^{-3}  

      \tau_{max} =  1.139 *10^{-7} \ N \cdot m  

You might be interested in
A racquetball strikes a wall with a speed of 30 m/s and rebounds in the opposite direction with a speed of 26 m/s. The collision
Fudgin [204]

Answer:

The average acceleration of the ball during the collision with the wall is a=2,800m/s^{2}

Explanation:

<u>Known Data</u>

We will asume initial speed has a negative direction, v_{i}=-30m/s, final speed has a positive direction, v_{f}=26m/s, \Delta t=20ms=0.020s and mass m_{b}.

<u>Initial momentum</u>

p_{i}=mv_{i}=(-30m/s)(m_{b})=-30m_{b}\ m/s

<u>final momentum</u>

p_{f}=mv_{f}=(26m/s)(m_{b})=26m_{b}\ m/s

<u>Impulse</u>

I=\Delta p=p_{f}-p_{i}=26m_{b}\ m/s-(-30m_{b}\ m/s)=56m_{b}\ m/s

<u>Average Force</u>

F=\frac{\Delta p}{\Delta t} =\frac{56m_{b}\ m/s}{0.020s} =2800m_{b} \ m/s^{2}

<u>Average acceleration</u>

F=ma, so a=\frac{F}{m_{b}}.

Therefore, a=\frac{2800m_{b} \ m/s^{2}}{m_{b}} =2800m/s^{2}

8 0
3 years ago
What unit is used to measure the period of a wave?
mixer [17]

Answer:

D. Meters/Seconds

Explanation:

The time period of a wave is measured in seconds.

A typical wave involves both time and distance.  Consider a sound wave, which is basically a periodic modulation of the local air pressure.  We "hear" the sound because our ears respond to the variations of pressure.

The most common metric of a sound wave is frequency.  This is the rate at which the change in pressure occurs, and is measured in cycles per second, formally known as "hertz".  The period is the inverse of frequency andl has the units of seconds per cycle, commonly stated simply as seconds.

4 0
3 years ago
In which of the two situations described is more energy transferred?
Furkat [3]

Answer:

More energy is transferred in situation A

Explanation:

Each of the situations are analyzed as follows;

Situation A

The temperature of the cup of hot chocolate = 40 °C

The temperature of the interior of the freezer in which the chocolate is placed = -20 °C

We note that at 0°C, the water in the chocolate freezes

The energy transferred by the chocolate to the freezer before freezing is given approximately as follows;

E₁ = m×c₁×ΔT₁

Where;

m = The mass of the chocolate

c₁ = The specific heat capacity of water = 4.184 kJ/(kg·K)

ΔT₁ = The change in temperature from 40 °C to 0°C

Therefore, we have;

E₁ = m×4.184×(40 - 0) = 167.360·m kJ

The heat the coffee gives to turn to ice is given as follows;

E₂ = m·H_f

Where;

H_f = The latent heat of fusion = 334 kJ/kg

∴ E₂ = m × 334 kJ/kg = 334·m kJ

The heat required to cool the frozen ice to -20 °C is given as follows;

E₃ = m·c₂·ΔT₂

Where;

c₂ = The specific heat capacity of ice = 2.108 kJ/(kg·K)

Therefore, we have;

E₃ = m × 2.108 ×(0 - (-20)) = 42.16

E₃ = 42.16·m kJ/(kg·K)

The total heat transferred = (167.360 + 334 + 42.16)·m kJ/(kg·K) = 543.52·m kJ/(kg·K)

Situation B

The temperature of the cup of hot chocolate = 90 °C

The temperature of the room in which the chocolate is placed = 25 °C

The heat transferred by the hot cup of coffee, E, is given as follows;

E = m×4.184×(90 - 25) = 271.96

∴ E = 271.96 kJ/(kg·K)

Therefore, the total heat transferred in situation A is approximately twice the heat transferred in situation B and is therefore more than the heat transferred in situation B

Energy transferred in situation A = 543.52 kJ/(kg·K)

Energy transferred in situation B = 271.96 kJ/(kg·K)

Energy transferred in situation A ≈ 2 × Energy transferred in situation B

∴ Energy transferred in situation A > Energy transferred in situation B.

3 0
3 years ago
A 52 N sled is pulled across a cement sidewalk at constant speed. A horizontal force of 36 N is exerted. What is the coefficient
Andre45 [30]

Answer:

μ = 0.692

Explanation:

In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.

Attached is an image with the respective forces:

A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.

Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.

The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.

The process of solving this problem can be seen in the attached image.

5 0
3 years ago
Isotopes of the same element vary in the number of ____ present in the nucleus A.neutrons
I am Lyosha [343]
A. Neutrons.
If it were electrons, it would be an ion.
If it were protons, it wouldn't be the same element.
5 0
4 years ago
Read 2 more answers
Other questions:
  • A school's new pump can fill the swimming pool in 2 hours, and the old pump takes 5 hours. What is the time required in hours to
    15·1 answer
  • What brand of soda contains the most caffeine? the dependent variable is the most caffeine
    15·1 answer
  • Sallie's recipe calls for a total of cups of flour to make biscuits. It says to use cup of flour from the total for rolling out
    15·2 answers
  • train engine of mass 4500 kg is connected by a rope to boxcar A. Boxcar A is connected by a second rope to boxcar B, which is co
    12·1 answer
  • If you stood on a planet with four times the mass of Earth, and twice Earth's radius, how much would you weigh?
    9·1 answer
  • The resistance of an electric heater is 50 Ω when connected to 120 V. How much energy does it use during 15 min of operation?
    7·1 answer
  • पत्र- अपने क्षेत्र की सड़कों की बुरी दशा की जानकारी देते हुए और उन्हें ठीक कराने की प्रार्थना करते हुए नगर निगम अधिकारी को पत्र
    8·1 answer
  • Define what is false​
    10·1 answer
  • Can somebody please help me? PLEASE
    8·1 answer
  • What is the relationship between friction and velocity?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!