C. The downward component of the projectile's velocity continually increases
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform motion (with constant velocity) along the horizontal direction
- A uniformly accelerated motion, with constant acceleration (equal to the acceleration of gravity) in the downward direction
Here we want to study the downward component of the projectile's velocity. Since the vertical motion is a uniformly accelerated motion, the vertical velocity is given by:

where
u = 0 is the initial vertical velocity (zero since the projectile is fired horizontally)
downward is the acceleration of gravity
t is the time
So the equation becomes

This means that
C. The downward component of the projectile's velocity continually increases
Because every second, it increases by
in the downward direction.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.
This question is poorly stated, but I assume you mean what conditions are needed. It would have to be cold outside, correct?
the answer is a) 0.00235 because 1/425=0.00235. hope I helped!
Answer:
18.7842493212 W
Explanation:
T = Tension = 1871 N
= Linear density = 3.9 g/m
y = Amplitude = 3.1 mm
= Angular frequency = 1203 rad/s
Average rate of energy transfer is given by

The average rate at which energy is transported by the wave to the opposite end of the cord is 18.7842493212 W