Answer:
b Different amounts of food samples were used.
Explanation:
The mass of the two samples needs to be the same in order for the test to be accurate.
Filtration can be used to separate an insoluble solid from a liquid, or a precipitate from the reaction mixture in which it formed. The solid which collects in the filter paper<span> is called the residue. The clear liquid which passes through the </span>filter paper<span> is called the filtrate.</span>
The reducing agent in the reaction 2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) is lithium (Li).
The general reaction is:
2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) (1)
We can write the above reaction in <u>two reactions</u>, one for oxidation and the other for reduction:
Li⁰(s) → Li⁺(aq) + e⁻ (2)
Fe²⁺(aq) + 2e⁻ → Fe⁰(s) (3)
We can see that Li⁰ is oxidizing to Li⁺ (by <u>losing</u> one electron) in the lithium acetate (<em>reaction 2</em>) and that Fe²⁺ in iron(II) acetate is reducing to Fe⁰ (by <u>gaining</u> two <em>electrons</em>) (<em>reaction 3</em>).
We must remember that the reducing agent is the one that will be oxidized by <u>reducing another element</u> and that the oxidizing agent is the one that will be reduced by <u>oxidizing another species</u>.
In reaction (1), the<em> reducing agent</em> is <em>Li</em> (it is oxidizing to Li⁺), and the <em>oxidizing agent </em>is<em> Fe(CH₃COO)₂</em> (it is reducing to Fe⁰).
Therefore, the reducing agent in reaction (1) is lithium (Li).
Learn more here:
I hope it helps you!
Oh that’s crazy I need help
Explanation:
The magnet uses electromagnetic induction meaning it can be readily magnetized and demagnetized (using electricity) when required. When electricity is switched on, it becomes magnetized and lifts an object and when electricity is switched off, it loses magnetism and releases the object.
The magnetic is able to lift heavy objects because it has powerful conductor material (ferromagnetic iron) and the number of electromagnetic coils is many to induce a powerful magnetic force. The electric current, inducing the magnetism, is also powerful.
Learn More:
For more on electromagnetic induction check out;
brainly.com/question/3414535
brainly.com/question/13369951
#LearnWithBrainly