-130KJ is the standard heat of formation of CuO.
Explanation:
The standard heat of formation or enthalpy change can be calculated by using the formula:
standard heat of formation of reaction = standard enthalpy of formation of product - sum of enthalpy of product formation
Data given:
Cu2O(s) ---> CuO(s) + Cu(s) ∆H° = 11.3 kJ
2 Cu2O(s) + O2(g) ---> 4 CuO(s) ∆H° = -287.9 kJ
CuO + Cu ⇒ Cu2O (-11.3 KJ) ( Formation of Cu2O)
When 1 mole Cu20 undergoes combustion 1/2 moles of oxygen is consumed.
Cu20 + 1/2 02 ⇒ 2CuO (I/2 of 238.7 KJ) or 119.35 KJ
So standard heat of formation of formation of Cu0 as:
Cu + 1/2 02 ⇒ CuO
putting the values in the equation
ΔHf = ΔH1 + ΔH2 (ΔH1 + ΔH2 enthalapy of reactants)
heat of formation = -11.3 + (-119.35)
= - 130.65kJ
-130.65 KJ is the heat of formation of CuO in the given reaction.
Huh I don’t know this
I’m doing this because u need more questions to ask lol
729 92872
its d because it all has to be balanced
<span> Vertical height of longest escalator in free world = 58.8 sin 32.4 = 31. 5 m
Karen's mass = 54.6 kg
Work done on Karen = mgh = 54.6(9.81)(31.5) = 1.69e4 J = 16.9 KJ ANS </span>
Answer:
5×10⁵ L of ammonia (NH3)
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2 + 3H2 —> 2NH3
From the balanced equation above, we can say that:
3 L of H2 reacted to produce 2 L of NH3.
Finally, we shall determine the volume of ammonia (NH3) produced by the reaction of 7.5×10⁵ L of H2. This can be obtained as illustrated below:
From the balanced equation above,
3 L of H2 reacted to produce 2 L of NH3.
Therefore, 7.5×10⁵ L of H2 will react to produce = (7.5×10⁵ × 2)/3 = 5×10⁵ L of NH3.
Thus, 5×10⁵ L of ammonia (NH3) is produced from the reaction.