Answer:Reflection
Explanation:
The throwing back of a sound wave without absorbing it is called reflection
In acoustic reflection of sound is termed as echo i.e. sound arrived at the listener after a particular delay depending upon the position of barrier to the observer.
The reflection of sound is used in many devices like megaphone, trumpets, etc. It is also used in auditorium such that the ceiling of the auditorium is curved for multiple reflections of sound so that sound can be reached at every corner of the auditorium.
Hi there!
A.
Since the can was launched from ground level, we know that its trajectory forms a symmetrical, parabolic shape. In other words, the time taken for the can to reach the top is the same as the time it takes to fall down.
Thus, the time to its highest point:

Now, we can determine the velocity at which the can was launched at using the following equation:

In this instance, we are going to look at the VERTICAL component of the velocity, since at the top of the trajectory, the vertical velocity = 0 m/s.
Therefore:

***vsinθ is the vertical component of the velocity.
Solve for 'v':

Now, recall that:

Plug in the expression for velocity:

B.
We can use the same process as above, where T' = 2T and Th = T.

C.
The work done in part B is 4 times greater than the work done in part A.

Given Information:
Current in loop = I = 62 A
Magnitude of magnetic field = B = 1.20x10⁻⁴ T
Required Information:
Radius of the circular loop = r = ?
Answer:
Radius of the circular loop = 0.324 m
Explanation:
In a circular loop of wire with radius r and carrying a current I induces a magnetic field B which is given by
B = μ₀I/2r
Please note that for an infinitely straight long wire we use 2πr whereas for circular loop we use 2r
Where μ₀= 4πx10⁻⁷ is the permeability of free space
Re-arranging the equation yields
r = μ₀I/2B
r = 4πx10⁻⁷*62/2*1.20x10⁻⁴
r = 0.324 m
Therefore, the radius of this circular loop is 0.324 m
Answer:
The police will cite you for speeding.
Explanation:
To know if the police will cite you for speeding we need to find the average speed (v):

<u>Where:</u>
x(f): is the final distance = 39 mi
x(i): is the initial distance = 0
t(f): is the final time = 53 min = 0.88 h
t(i): is the initial time = 17 min = 0.28 h
Hence, the average speed is:

Therefore, since the limit speed is 60 mph and your speed is 65 mph, the police will cite you for speeding.
I hope it helps you!