Answer:
1/9 of that just outside the smaller sphere
Explanation:
The electric field strength produced by a charged sphere outside the sphere itself is equal to that produced by a single point charge:

where
k is the Coulomb's constant
Q is the charge on the sphere
r is the distance from the centre of the sphere
Calling R the radius of the first sphere, the electric field just outide the surface of the first sphere is

The second sphere has a radius which is 3 times that of the smaller sphere:

So, the electric field just outside the second sphere is

So, the correct answer is 1/9.
The lower the value of the coefficient of friction, the lower the resistance to sliding.
<u>Explanation:</u>
The coefficient of friction defines as directly proportionate with the resisting force, which is the frictional force. Hence, if there seems a decrease at coefficient of friction, then it is sure that the frictional force decreases.
We know that the frictional force on a body, is the product of coefficient of frictions and the normal forces acting on the body. Note that friction acts only, if a body is in contact, and it is of three types, static, kinetic and rolling.
Answer:
L = 4.711 *10^{-6} kg m2/s
Explanation:


=4.5*10^-5
angular velocity

= 0.1047 rad/s
the angular momentum,



Answer:
The Earth is toward the sun
Explanation:
DONT LISTEN TO ME I AM A CHILD AND I JUST GUESSED