Answer:
Mistakes, chaos theory.
Explanation:
Weather forecast refers to the application of technology and science in predicting what the condition's of an atmosphere would be at a particular time in a given location. Keyword here is "Predicting."
To accurately "predict" the weather, observation data needs to be collected from weather stations across the world. The data collected from the stations are too complex such that they can only be processed by supercomputers.
It is important to note that supercomputers used to predict weather are liable to make mistakes because the enormous challenge of weather forecasting is more than their capabilities.
In addition, there is a concept known as chaos theory. It explains how very small changes in initial weather conditions can change the final results. No thanks to chaos, meteorologists would not be able to predict weather accurately.
This is the reason why the world still suffers from the incidence of surprise rain, storms and other weather events that could be devastating.
Answer:
0,93 atm
Explanation:
For this we will use PV = nRT
P is what we want to find
V = 1 L
n =
= 0,038 moles
R = 0,082 
T = 25°C = 298,15 K
P * 1 = 0,038 *0,082 * 298,15
P = 0,93 atm
Answer:
(i) Electric field outside the shell:
For point r>R; draw a spherical gaussian surface of radius r.
Using gauss law, ∮E.ds=q0qend
Since E is perpendicular to gaussian surface, angle betwee E is 0.
Also E being constant, can be taken out of integral.
So, E(4πr2)=q0q
So, E=4πε01r2q
Impulse = (force) x (length of time the force lasts)
I see where you doodled (60)(40) over on the side, and you'll be delighted
to know that you're on the right track !
Here's the mind-blower, which I'll bet you never thought of:
On a force-time graph, impulse (also change in momentum)
is just the <em>area that's added under the graph during some time</em> !
From zero to 60, the impulse is just the area of that right triangle
under the graph. The base of the triangle is 60 seconds. The
height of the triangle is 40N . The area of the triangle is not
the whole (base x height), but only <em><u>1/2 </u></em>(base x height).
1/2 (base x height) = 1/2 (60s x 40N) = <u>1,200 newton-seconds</u>
<u>That's</u> the impulse during the first 60 seconds. It's also the change in
the car's momentum during the first 60 seconds.
Momentum = (mass) x (speed)
If the car wasn't moving at all when the graph began, then its momentum is 1,200 newton-sec after 60 seconds. Through the convenience of the SI system of units, 1,200 newton-sec is exactly the same thing as 1,200 kg-m/s . The car's mass is 3 kg, so after 60 sec, you can write
Momentum = M x V = (3 kg) x (speed) = 1,200 kg-m/s
and the car's speed falls right out of that.
From 60to 120 sec, the change in momentum is the added area of that
extra right triangle on top ... it's 60sec wide and only 20N high. Calculate
its area, that's the additional impulse in the 2nd minute, which is also the
increase in momentum, and that'll give you the change in speed.
The x-acis of a trajectory represents its C