Answer:
a) fr = 224.3 N
, b) fr = 224.3 N
, c) v = 198.0 m/s
Explanation:
a) For this exercise let's start by calculating the acceleration in the fall
v² = v₀² - 2 a (y-y₀)
When it jumps the initial vertical speed is zero
a = -v² / 2 (y-y₀)
a = -68 2/2 (1000-2000)
a = 2,312 m / s²
Let's use the second net law to enter the average friction force
fr = m a
fr = 97 2,312
fr = 224.3 N
b) let's look for acceleration
v² = v₀² - 2 a y
a = (v² –v₀²) / 2 (y-y₀)
a = (4² - 68²) / 2 (0-1000)
a = 2,304 m / s²
fr = m a
fr = 97 2,304
fr = 223.5 N
c) the speed of the wallet is searched with kinematics
v² = v₀² - 2 g (y-y₀)
v = √ (0-2 9.8 (0-2000))
v = 198.0 m/s
The activation energy is 10 kJ and the reaction is exothermic.
The answer would be erin out of all of them thank me later :)
Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.