Kepler derived his three laws of planetary motion entirely from
observations of the planets and their motions in the sky.
Newton published his law of universal gravitation almost a hundred
years later. Using some calculus and some analytic geometry, which
any serious sophomore in an engineering college should be able to do,
it can be shown that IF Newton's law of gravitation is correct, then it MUST
lead to Kepler's laws. Gravity, as Newton described it, must make the planets
in their orbits behave exactly as they do.
This demonstration is a tremendous boost for the work of both Kepler
and Newton.
Answer:
V=972π
The equation I used... V=4/3π(9)^3
Current is defined as the rate of charge flowing a point every second. Having a current of 1 Ampere signifies 1 Coulomb is flowing in a circuit every second. It is measured by the use of an ammeter which is positioned in series to the component to be measured. The current in the problem is calculated as follows:
I = 2.0 x 10^-4 C / 5.0 x 10^-5 s
<span>I = 4 A or 4.0 x 10^0 A</span>
Answer:
D.The striking foot pushes backward against the ground. The friction with the ground provides an equal and opposite force forward
Answer:
0.0605 Kg m^2
Explanation:
In this case where we have find he moment of inertia of this object about an axis perpendicular to the x-y plane and passing through the origin, we can just add three moment of inertia's .
MOI= 0.25×0.3^2 + 0.35×0.4^2- 0.45×0.2^2
= 0.0605 Kg m^2