The particles can undergo small oscillations around x₂.
The given parameters;
- <em>initial energy of the particles = E₁</em>
- <em>final energy of the particles, E₂ = 0.33E₁</em>
The movement of the particles depends on the kinetic energy of the particles.
When kinetic energy of the particles is 100%, the particles can oscillate from x₁ to x₅.
However, when the total energy of this particles is reduced to one-third (¹/₃) or 33% of the initial energy of the particle, the oscillation of the particles will be reduced.
- The maximum position the particle can oscillate is x₅
- The half position the particles can oscillate is x₃
Since 33% is less than the half of the energy of the particle, the particle will oscillate between x₁ and x₂.
Thus, we can conclude that the particles can undergo small oscillations around x₂.
Learn more here:brainly.com/question/23910777
That is force. Whenever you see the words push or pull always think of Force
Answer:
∈=
Explanation:
Using the Gauss Law to determine the electric field of the net flux at the surface of the nucleus
∈
The P is the charge density and 'Eo' is the constant of permittivity in free space
to find P





So replacing
∈
∈=
Answer:
20%
Explanation:
Relative Humidity (%) = (water vapor content÷water vapor capacity) × 100
=(7÷35)×100
=(0.2)×100
=20%
According to the Temperature-Water Vapor Capacity Table, the water capacity at 35 °C is 35 grams.
Water Vapor Capacity: The amount of water (grams) which air can hold at a given temperature.
Water Vapor Content: The amount of water vapor actually present in the air.
Answer:

Explanation:
Wien's displacement law states that the radiation of the black body curve for different temperatures will give peak values at different wavelengths and this wavelength is related inversely to the temperature.
Formally the law of Wien displacement states that the black body's spectral radiation per unit of wavelength, will give peaks at the wavelength of
which is given by the mathematical expression.
Here, b is proportionality constant with value of
The wavelength of the peak of the Gaussian curve is inversely related to temperature in degree kelvin.