Answer:
Both of the studies said that the mass of the atom is centered in the nucleus, which is positive, and there are electrons (negative particles) orbiting it. So, Rutheford and Nagaoka discovered that the atom can be divisible and it has an empty space.
But, in the model of Nagaoka, the nucleus was huge, and for Rutherford, the nucleus was really small, and the mass was concentrated. By his experiment with the gold sheets, the theory was appropriated. That's why Rutherford is credited with the discovery of the nucleus. Nagaoka was incorrect in his suppositions.
Data: molar mass 470 g/mol
Percent composition:
Hg = 85.0%
Cl = 15.0%
Solution:
1) Convert % to molar ratios
A. Base: 100 g
=> Hg = 85.0 g / 200.59 g/mol = 0.4235 mol
Cl = 15.0 g / 35.45 g/mol = 0.4231 mol
B. divide by the higher number and round to whole number
Hg = 0.4325 / 0.4231 = 1.00
Cl = 0.4231 / 0.4231 = 1.00
=> Empirical formula = Hg Cl
2) Find the mass of the empirical formula:
HgCl: 200.59 g/mol + 35.45 g/mol = 236.04
3) Determine how many times is the empirical mass contained in the molecular mass:
470 g/mol / 236.04 = 1.99 ≈ 2
=> Molecular formula = Hg2 Cl2.
Answers:
Empirical formula HgCl
Molecular Formula Hg2Cl2
Answer:
Its valancy is 1.
As it has the formula OH-.
It has valancy 1.
<em><u>hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em>
Our reaction balanced equation at equilibrium N2(g) + 3 H2(g) ↔ 2 NH3(g)
and we have the Kp value at equilibrium = 4.51 X 10^-5
A) 98 atm NH3, 45 atm N2, 55 atm H2
when Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
= 98^2 / (45 * 55^3) = 1.28 x 10^-3
by comparing the Kp by the Kp at equilibrium(the given value) So,
Kp > Kp equ So the mixture is not equilibrium,
it will shift leftward (to decrease its value) towards the reactants to achieve equilibrium.
B) 57 atm NH3, 143 atm N2, no H2
∴ Kp = [P(NH3)]^2 / [P(N2)]
= 57^2 / 143 = 22.7
∴Kp> Kp equ (the given value)
∴it will shift leftward (to decrease its value) towards reactants to achieve equilibrium.
c) 13 atm NH3, 27 atm N2, 82 atm H2
∴Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
= 13^2 / (27* 82^3) = 1.14 X 10^-5
∴ Kp< Kp equ (the given value)
∴it will shift rightward (to increase its value) towards porducts to achieve equilibrium.
Answer:
A. Yes, the substance must be water.
Explanation:
The density of a substance is unique to it. Density is defined the as the amount of substance contained per volume.
One of the ways of identifying a substance is to determine its density. Every matter is known to have their own specific densities. This makes them different from other substances. The density of gold is unique to it and it differs from that of silver.
In fact, water has density of 1.00gcm⁻³. Experimental errors and some little factors must have altered our expected figure. This a case of precision and accuracy in the experiment.