Longitudinal. (just remember that Transverse waves are perpendicular. T is like an inverted perpendicular sign)
Answer:
The reaction combines the sodium with the hydrogen and oxygen in water to form sodium hydroxide and hydrogen gas, and you get a lot of energy released as heat as well. This heat actually melts any remaining sodium that has not reacted yet, and ignites the hydrogen gas, so you get the bang and the flash.
Explanation:
Answer:You can set up stoichiemetry using the following equation:
(15.6 g MgF2) x (38g F / 62g MgF2) x (6.022x10^23 / 19gF)
= 3.03 x 10^23 molecules of F
or 1.52 x 10^23 molecules of F2
The number of molecules of magnesium fluoride in 15.6 g of MgF2 has to be found.
The molecular mass of MgF2 is 62.3018. 15.6 g of MgF2 is equivalent to 15.6/62.3018 mole of MgF2.
One mole of a gas has 6.02214179*10^23 particles.
15.6/62.3018 mole of MgF2 has (15.6/62.3018)*6.02214179*10^23 molecules of the compound.
(15.6/62.3018)*6.02214179*10^23
=> 1.5079*20^23
If this is rounded to one decimal figure the result is 1.51*10^23.
The number of molecules of MgF2 in 15.6 g of the gas is 1.51*10^23.
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:

Moles of HI = 0.550 moles
Volume of container = 2.00 L

For the given chemical equation:

<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
Answer:
B
Explanation:
Hydrogen is synthesized to water by adding Oxygen.
Hydrogen is oxidised to water by combustion ( burning in presence of oxygen).