Answer:
In 4.5 grams of tetraphosphorus decoxide we have 3.85 * 10^22 phosphorus atoms
Explanation:
Step 1: Data given
tetraphosphorus decoxide = P4O10
Molar mass of P4O10 = 283.89 g/mol
Mass of P4O10 = 4.5 grams
Number of Avogadro = 6.022 * 10^23 / mol
Step 2: Calculate moles of P4O10
Moles P4O10 = mass P4O10 / molar mass P4O10
Moles P4O10 = 4.5 grams / 283.89 g/mol
Moles = 0.016 moles
Step 3: Calculate moles of P
For 1 mol P4O10 we have 4 moles of phosphorus
For 0.016 moles P4O10 we have 4*0.016 = 0.064 moles P
Step 4: Calculate number of P atoms
Number of P atoms = moles P * number of Avogadro
Number of P atoms = 0.064 moles * 6.022*10^23
Number of P atoms = 3.85 * 10^22 atoms
In 4.5 grams of tetraphosphorus decoxide we have 3.85 * 10^22 phosphorus atoms
Answer: 2 molecules of ammonia
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for the formation of ammonia is:

According to stoichiometry,
3 molecules of hydrogen combines with 1 molecule of nitrogen to give 2 molecules of ammonia.
Answer:
ffgghhhhhgffffffcvvvvvvvvvvvvvvvvvv
Explanation:
cccvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
As we move down the group, the metallic bond becomes more stable and the formation of forming covalent bond decreases down the group due to the large size of elements.
Covalent and metallic bonding leads to higher melting points. Due to a decrease in attractive forces from carbon to lead there is a drop in melting point.
Carbon forms large covalent molecules than silicon and hence has a higher melting point than silicon.
Similarly, Ge also forms a large number of covalent bonds and has a smaller size as compared to that of Sn. Hence melting point decreases from Ge to Sn.
The order will be C>Si>Ge>Pb>Sn.
To learn more about the covalent bond, visit: brainly.com/question/10777799
#SPJ4
Answer:
The period 4 alkaline-earth metal has the name Calcium. An isotope of this element having 20 neutrons has a mass number of 40.
Explanation:
Looking at the periodic table 4th row for the alkaline-earth metal, we can find Calcium which has an atomic number of 20 (or protons number, or z). The mass number is given by the sum of protons and neutrons. If the number of protons in this case is 20 and the number of neutrons is also 20, the mass number A = 40.