To be honest, I can’t really see the question. So please next time just type it out lol
An open system is
when there is a transfer of energy and matter with its surroundings.
A closed system is
where there is a transfer of energy, may it be heat or work, but not matter
with its surroundings.
An isolated system
is where there is no transfer of energy or matter with its surroundings.
Answer:
So, the right answer is. No. of moles of FeS₂ = 0.25 mole. Explanation: From the balanced. 4 FeS2 + 11 O2 → 2 Fe2O3 + 8 SO2.
Explanation:
Answer:
0.20 m glucose < 0.40 m NaCl < 0.30 m BaCl2 < 0.50 m Na2SO4.
Explanation:
Step 1: Data given
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = Shows how much the boiling point increases
⇒i = the van't Hoff factor: Says in how many particles the compound will dissociate
⇒ Since all are aqueous solutions Kb for all solutions is the same (0.512 °C/m)
⇒m = the molality
Step 2:
0.20 m glucose
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = TO BE DETERMINED
⇒i = the van't Hoff factor for glucose = 1
⇒ Kb = 0.512 °C/m
⇒m = 0.20 m
ΔT = 1*0.512 * 0.20
<u>ΔT = 0.1024 °C</u>
0.30 m BaCl2
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = TO BE DETERMINED
⇒i = the van't Hoff factor for BaCl2 = Ba^2+ + 2Cl- : i = 3
⇒ Kb = 0.512 °C/m
⇒m = 0.30 m
ΔT = 3*0.512 * 0.30
<u>ΔT = 0.4608 °C</u>
0.40 m NaCl
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = TO BE DETERMINED
⇒i = the van't Hoff factor for NaCl = Na+ + Cl- : i = 2
⇒ Kb = 0.512 °C/m
⇒m = 0.40 m
ΔT = 2*0.512 * 0.40
<u>ΔT = 0.4096 °C</u>
0.50 m Na2SO4.
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = TO BE DETERMINED
⇒i = the van't Hoff factor for Na2SO4 = 2Na+ + SO4^2- : i =3
⇒ Kb = 0.512 °C/m
⇒m = 0.50 m
ΔT = 3*0.512 * 0.50
<u>ΔT = 0.768 °C</u>
0.20 m glucose < 0.40 m NaCl < 0.30 m BaCl2 < 0.50 m Na2SO4.
Answer:

Explanation:
Hello,
In this case, the reaction between sulfuric acid and hydroxide is:

We can notice a 1:2 molar ratio between the acid and the base respectively, therefore, at the equivalence point we have:

And in terms of volumes and concentrations:

So we compute the molarity of sulfuric acid as shown below:

Best regards.